• Title/Summary/Keyword: High heat-load

Search Result 563, Processing Time 0.033 seconds

Changes of Chemical, Bacteriological, and Allergenicity of Raw Milk by Gamma Irradiation (감마선 조사 처리에 의한 우유의 화학적${\cdot}$세균학적 및 항원성 변화)

  • Noh, Yeong-Bae;Kim, Seung-Il;Kim, Hyeon-Su;Jeong, Seok-Geun;Chae, Hyeon-Seok;An, Jong-Nam;Jo, Cheol-Hun;Lee, Wan-Gyu;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.93-98
    • /
    • 2005
  • Effects of heat and gamma irradiation on chemical, microbiological, and immunological changes of raw milk were compared. Free fatty acid content of milk showed increasing tendency according to the increase of heating temperature and irradiation dose, and showed similarity in UHT (ultra high temperature) and 5 kGy irradiation. Total bacterial counts and coliforms were not detected after treatment of LTLT (low temperature long time), HTST (high temperature short time), UHT, and irradiation from 1 to 10 kGy in the milk with initial microbial load at $10^3$ CFU/mL initially, but after 7 day storage, were not detected in UHT milk and that irradiated at 3 kGy or above. Heat treatment decreased (p<0.05) arginine, asparate, iso-leucine, lysine, and methionine content compared to raw milk while irradiation decreased (p<0.05) asparate, histidine, iso-luecine, leucine, and lysine content, which means irradiation could change primary structure of milk proteins. It was concluded that f kGy gamma irradiation treatment of raw milk could give a similar effect to UHT treatment in chemical and microbiological viewpoint, and may reduce allergenicity of raw milk.

  • PDF

고강도 및 파괴인성을 갖는 AI-Li-Cu 합금 개발

  • Kim, Song-Hui;Yun, Yeo-Beom;Hwang, Yeong-Hwa;Choe, Chang-U;Hong, Jun-Pyo;Lee, Eung-Jo
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1993
  • High strength and fracture toughness of Al-Li-Cu alloy(2090 Al alloy) have been achieved by the improvement of melting and casting, extrusion and heat treatment techniques. To establish the sucessful process for semi-industrial scale ingot(20Kg) the following areas have been investigated: (1) Improvement of melting and casting techniques for ingot by introducing atmospheric modifications, vacuum and rotary degassing, and deslagging. (2) The effect of heat treatment on mechanical properties (3) Mechanical characterization by tensile test, fracture toughness test and fatigue crack propagation test. High mechanical properties were found to be intimately related with ingot soundness. Tensile strength of final products varied from 534MPa to 566MPa in peak aged condition while elongation/ductility ranged from 9.0% to 11.9%. From the fracture toughness test with using compact tensile specimen, plane strain fracture toughness($K_{Ic}$) appeared to be 39MPa${\surd}$m in peak aged condition and 23MPa${\surd}$ m in underaged condition. When load ratios of 0.1, 0.3 and 0.5 were given ${\Delta}K_{th}$ was 6.0MPa${\surd}$ m, 5.3MPa${\surd}$ m and 4.3MPa${\surd}$ m respectively.

  • PDF

Comparison of Rooftop Surface Temperature and Indoor Temperature for the Evaluation of Cool Roof Performance according to the Rooftop Colors in Summer: Using Thermal Infrared Camera Mounted on UAV (옥상 색상에 따른 쿨루프 성능평가를 위한 여름철 옥상 표면 및 실내온도 비교 분석 : 무인항공기에 장착된 열적외선 카메라를 이용하여)

  • Lee, Ki Rim;Seong, Ji Hoon;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • The intensity and the number of days of high temperature occurrence are also high and record heat occurred. In addition, the global warming phenomenon is intensifying globally, and especially in South Korea, the urban heat island phenomenon is also occurring due to rapid urbanization due to rapid industrial development. As the temperature of the city rises, it causes problems such as the comfort of the residential living and the cooling load. In this study, the cool roof performance is evaluated according to the roof color to reduce these problems. Unlike previous studies, UAV(Unmanned Aerial Vehicle) thermal infrared camera was used to obtain the surface temperature (white, grey, green, blue, brown, black) according to the rooftop color by remote sensing technique. As a result, the surface temperature of white color was $11{\sim}20^{\circ}C$ lower than other colors. Also air conditioning temperature of white color was $1.5{\sim}4.4^{\circ}C$ lower than other colors and the digital thermometer of white color was about $1.5{\sim}3.5^{\circ}C$ lower than other colors. It was confirmed that the white cool roof performance is the best, and the UAV and the thermal infrared camera can confirm the cool roof performa.

A study on the shear bond strengths of veneering ceramics to the colored zirconia core (착색지르코니아 코어와 전장 도재 사이의 전단결합강도에 관한 연구)

  • Kang, Sun-Nyo;Cho, Wook;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.3
    • /
    • pp.312-319
    • /
    • 2009
  • Statement of problem: Delamination of veneering porcelain from underlying ceramic substructures has been reported for zirconia-ceramic restorations. Colored zirconia cores for esthetics have been reported that their bond strength with veneered porcelain is weaker compared to white zirconia cores. Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the colored zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing the result of this with that of conventional metal ceramic system. Material and methods: A Metal ceramic (MC) system was tested as a control group. The tested systems were Katana zirconia with CZR (ZB) and Katana Zirconia with NobelRondo Press (ZP). Thirty specimens, 10 for each system and control, were fabricated. Specimen disks, 3 mm high and 12 mm diameter, were fabricated with the lost-wax technique (MC) and the CAD-CAM (ZB and ZP). MC and ZB specimens were prepared using opaque and dentin veneering ceramics, veneered, 3 mm high and 2.8 mm in diameter, over the cores. ZP specimens were prepared using heat pressing ingots, 3 mm high and 2.8mm in diameter. The shear bond strength test was performed in a Shear bond test machine. Load was applied at a cross-head speed of 0.50 mm/min until failure. Mean shear bond strengths (MPa) were analyzed with the One-way ANOVA. After the shear bond test, fracture surfaces were examined by SEM. Results: The mean shear bond strengths (SD) in MPa were MC control 29.14 (2.26); ZB 29.48 (2.30); and ZP 29.51 (2.32). The shear bond strengths of the tested systems were not significantly different (P > .05). All groups presented cohesive and adhesive failures, and showed predominance of cohesive failures in ceramic veneers. Conclusion: 1. The shear bond strengths of the tested groups were not significantly different from the control group (P >.05). 2. There was no significant different between the layering technique and the heat pressing technique in the veneering methods on the colored zirconia core. 3. All groups presented cohesive and adhesive failures, and showed predominance of cohesive failures in ceramic veneers.

Mock-up Test of Temperature Crack Reduction Method Application by Setting Time Control of Mat Foundation Mass Concrete (응결시간조정에 의한 매트기초 매스 콘크리트의 온도균열저감 공법적용의 Mock-up Test)

  • Han, Cheon-Goo;Lee, Jae-Sam;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, the number of high-rise buildings being built in Korea by major construction companies for residential and commercial use has been increasing. When constructing a high-rise building, it is necessary to apply massive amounts of concrete to form a mat foundation that can withstand the huge load of the upper structure. However, it is of increasing concern that due to limitations in terms of the amount of placing equipment, available job-sites and systems for mass concrete placement in the construction field, it is not always possible to place a great quantity of concrete simultaneously in a large-scale mat foundation, and for this reason consistency between placement lift cannot be secured. In addition, a mat foundation Is likely to crack due to the stress caused by differences inhydration heat generation time. To derive a solution for these problems, this study provides test results of a hydration heat crack reduction method by applying placement lift change and setting time control with a super retarding agent for mass concrete in a large-scale mat foundation. Mock-up specimens with different mixtures and placement liftswere prepared at the job-site of a newly-constructed high-rise building. The test results show that slump flow of concrete before and after adding the super retarding agent somewhat Increases as the target retarding time gets longer, while the air content shows no great difference. The setting time was observed to be retarded as the target retarding time gets longer. As the target retarding time gets longer, compressive strength appears to be decreased at an early stage, but as time goes by, compressive strength gets higher, and the compressive strength at 28 days becomes equal or higher to that of plain concrete without a super retarding agent. For the effect of placement lift change and super retarding agent on the reduction of hydration heat, the application of 2 and 4 placement lifts and a super retarding agent makes it possible to secure consistency and reduce temperature difference between placement lifts, while also extending the time to reach peak temperature. This implies that the possibility of thermal crack induced by hydration heat is reduced. The best results are shown in the case of applying 4 placement lifts.

Behaviors of the High-profile Arch Soil-steel Structure During Construction (높은 아치형 지중강판 구조물의 시공 중 거동 분석)

  • 이종구;조성민;김경석;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.71-84
    • /
    • 2003
  • The metallic shell of soil-steel structures are so weak in bending moment that it should sustain the applied load by the interaction of the backfill soil around the structures. The shell can be subjected to excessive bending moment during side backfilling or under live-load when the soil cover is less than the minimum value. The current design code specifies the allowable deformation and Duncan(1979) and McGrath et al.(2001) suggested the strength analysis methods to limit the moments by the plastic capacity of the shell. However, the allowable deformation is an empirically determined value and the strength analysis methods are based on the results of FE analysis, hence the experimental verification is necessary. In this study, the full-scale tests were conducted on the high-profile arch to investigate its behaviors during backfilling and under static live-loads. Based on the measurements, the allowable deformation of the tested structure could be estimated to be 1.45% of rise, which is smaller than the specified allowable deformation. The comparison between the measurements and the results of two strength analyses indicate that Duncan underestimates the earth-load moment and overestimates the live-load moment, while McGrath et al. predicts both values close to the actual values. However, as the predicted factors of safeties using two methods coincide with the actual factor of safety, it can be concluded that both methods can predict the structural stability under live-loads adequately when the cover is less than the minimum.

Estimation of Soil Cooling Load in the Root Zone of Greenhouses (온실내 근권부의 지중냉각부하 추정)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2002
  • Root zone cooling, such as soil or nutrient solution cooling, is less expensive than air cooling in the whole greenhouse and is effective in promoting root activity, improving water absorption rate, decreasing plant temperature, and reducing high temperature stress. The heat transfer of a soil cooling system in a plastic greenhouse was analyzed to estimate cooling loads. The thermal conductivity of soil, calculated by measured heat fluxes in the soil, showed the positive correlation with the soil water content. It ranged from 0.83 to 0.96 W.m$^{[-10]}$ .$^{\circ}C$$^{[-10]}$ at 19 to 36% of soil water contents. As the indoor solar radiation increased, the temperature difference between soil surface and indoor air linearly increased. At 300 to 800 W.m$^{-2}$ of indoor solar radiations, the soil surface temperature rose from 3.5 to 7.$0^{\circ}C$ in bare ground and 1.0 to 2.5$^{\circ}C$ under the canopy. Cooling loads in the root zone soil were estimated with solar radiation, soil water content, and temperature difference between air and soil. At 300 to 600 W.m$^{-2}$ of indoor solar radiations and 20 to 40% of soil water contents,46 to 59 W.m$^{-2}$ of soil cooling loads are required to maintain the temperature difference of 1$0^{\circ}C$ between indoor air and root zone soil.

Behaviors of a Vault Door Made of Ultra High Performance Concrete and Strengthening Structures Subjected to Extreme Impact Load and Ultra High Heat (초고강도콘크리트와 보강 구조물을 사용한 금고 충전부의 초고열과 극한충격파괴에 대한 거동)

  • Oh, Seok-Min;Kim, Tae-Wan;Hong, Sung-Nam;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.565-572
    • /
    • 2008
  • It is a trend to increase safekeeping properties in financial company as the world economy situation has been globalized and advanced. The development of a securable vault door resisting to malicious trespass is needed. Therefore, this study focuses on developing high performance concrete placed at the inside of the vault door, and all materials used in this study is easy to obtain in domestic considering economic competitiveness. The compressive strength over 170 MPa was targeted, and structurally strengthening was also planned in order to resist to over $3,000^{\circ}C$ heating by torch and extreme impact loading by hammer drilling machine. Several types of fibers and reinforcing structures were used in order to resist those external heating and loading. This purpose was required to satisfy UL 608 standard of a vault door. Consequently, the result from this study is expected to be applied to construction field of major facilities, which should guarantee the safety from an external attack such as terror.

Fragility functions for eccentrically braced steel frame structures

  • O'Reilly, Gerard J.;Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.367-388
    • /
    • 2016
  • Eccentrically braced frames (EBFs) represent an attractive lateral load resisting steel system to be used in areas of high seismicity. In order to assess the likely damage for a given intensity of ground shaking, fragility functions can be used to identify the probability of exceeding a certain damage limit-state, given a certain response of a structure. This paper focuses on developing a set of fragility functions for EBF structures, considering that damage can be directly linked to the interstorey drift demand at each storey. This is done by performing a Monte Carlo Simulation of an analytical expression for the drift capacity of an EBF, where each term of the expression relies on either experimental testing results or mechanics-based reasoning. The analysis provides a set of fragility functions that can be used for three damage limit-states: concrete slab repair, damage requiring heat straightening of the link and damage requiring link replacement. Depending on the level of detail known about the EBF structure, in terms of its link section size, link length and storey number within a structure, the resulting fragility function can be refined and its associated dispersion reduced. This is done by using an analytical expression to estimate the median value of interstorey drift, which can be used in conjunction with an informed assumption of dispersion, or alternatively by using a MATLAB based tool that calculates the median and dispersion for each damage limit-state for a given set of user specified inputs about the EBF. However, a set of general fragility functions is also provided to enable quick assessment of the seismic performance of EBF structures at a regional scale.

Development of Large Superalloy Exhaust Valve Spindle by Dissimilar Inertia Welding Process (이종재료 마찰용접에 의한 초내열합금 대형 배기밸브 스핀들 개발)

  • Park Hee-Cheon;Jeong Ho-Seung;Cho Jong-Rac;Lee Nak-Kyu;Oh Jung-Seok;Han Mvoung-Seoup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.891-898
    • /
    • 2005
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint race, and energy required lot welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy amount of upset. working time, and residual stresses in the joint. Inertia welding was conducted to make the large exhaust valve spindle for low speed marine diesel engine. superalloy Nimonic 80A for valve head of 540mm and high alloy SNCrW for valve stem of 115mm. Due to different material characteristics such as, thermal conductivity and flow stress. on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and Parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the Predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters. especially for welds for which are very expensive materials or large shaft. Many kinds of tests, including macro and microstructure observation, chemical composition tensile , hardness and fatigue test , are conducted to evaluate the qualify of welded joints. Based on the results of the tests it can be concluded that the inertia welding joints of the superalloy exhaust valve spindle are better properties than the material specification of SNCrW.