• 제목/요약/키워드: High frames

검색결과 892건 처리시간 0.029초

Modal strength reduction factors for seismic design of plane steel frames

  • Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.65-88
    • /
    • 2011
  • A new method for the seismic design of plane steel moment resisting frames is developed. This method determines the design base shear of a plane steel frame through modal synthesis and spectrum analysis utilizing different values of the strength reduction (behavior) factor for the modes considered instead of a single common value of that factor for all these modes as it is the case with current seismic codes. The values of these modal strength reduction factors are derived with the aid of a) design equations that provide equivalent linear modal damping ratios for steel moment resisting frames as functions of period, allowable interstorey drift and damage levels and b) the damping reduction factor that modifies elastic acceleration spectra for high levels of damping. Thus, a new performance-based design method is established. The direct dependence of the modal strength reduction factor on desired interstorey drift and damage levels permits the control of deformations without their determination and secures that deformations will not exceed these levels. By means of certain seismic design examples presented herein, it is demonstrated that the use of different values for the strength reduction factor per mode instead of a single common value for all modes, leads to more accurate results in a more rational way than the code-based ones.

Analysis of Mechanical Properties in Steel Frame with Ductile Connections

  • Han, Minglan;Wang, Shuai;Wang, Yan
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1464-1469
    • /
    • 2018
  • Steel frames with ductile connections have good seismic performance under strong earthquake, they are now popular for high seismic design. In order to simplify the process of numerical analysis of the steel frames with ductile connections, simplified connection models are introduced, two types of springs are placed in the simplified connection model, which can simulate deformation of the panel zone and members. 6-story-3-bay steel frames with ductile connections are simplified and carried out modal analysis, fundamental periods of the frames predicted by finite-element analysis for simplified steel frame models were compared to the results for actual frame models. 2-story steel frame with reduced beam section connections is simplified and carried out pseudo-static analysis, hysteretic curves and skeleton curves of the frame obtained by finite-element analysis for simplified steel frame model are compared to test results. The comparison show that the difference between them is small, it is reliable and effective to predict mechanical properties of the steel frame with ductile connection by finite-element analysis of simplified steel frame model.

Application of GMDH model for predicting the fundamental period of regular RC infilled frames

  • Tran, Viet-Linh;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.123-137
    • /
    • 2022
  • The fundamental period (FP) is one of the most critical parameters for the seismic design of structures. In the reinforced concrete (RC) infilled frame, the infill walls significantly affect the FP because they change the stiffness and mass of the structure. Although several formulas have been proposed for estimating the FP of the RC infilled frame, they are often associated with high bias and variance. In this study, an efficient soft computing model, namely the group method of data handling (GMDH), is proposed to predict the FP of regular RC infilled frames. For this purpose, 4026 data sets are obtained from the open literature, and the quality of the database is examined and evaluated in detail. Based on the cleaning database, several GMDH models are constructed and the best prediction model, which considers the height of the building, the span length, the opening percentage, and the infill wall stiffness as the input variables for predicting the FP of regular RC infilled frames, is chosen. The performance of the proposed GMDH model is further underscored through comparison of its FP predictions with those of existing design codes and empirical models. The accuracy of the proposed GMDH model is proven to be superior to others. Finally, explicit formulas and a graphical user-friendly interface (GUI) tool are developed to apply the GMDH model for practical use. They can provide a rapid prediction and design for the FP of regular RC infilled frames.

Seismic behavior of K-type eccentrically braced frames with high strength steel based on PBSD method

  • Li, Shen;Wang, Chao-yu;Li, Xiao-lei;Jian, Zheng;Tian, Jian-bo
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.667-685
    • /
    • 2018
  • In eccentrically braced steel frames (EBFs), the links are fuse members which enter inelastic phase before other structure members and dissipate the seismic energy. Based on the force-based seismic design method, damages and plastic deformations are limited to the links, and the main structure members are required tremendous sizes to ensure elastic with limited or no damage. Force-based seismic design method is very common and is found in most design codes, it is unable to determine the inelastic response of the structure and the damages of the members. Nowadays, methods of seismic design are emphasizing more on performance-based seismic design concept to have a more realistic assessment of the inelastic response of the structure. Links use ordinary steel Q345 (the nominal yielding strength $f_y{\geq}345MPa$) while other members use high strength steel (Q460 $f_y{\geq}460MPa$ or Q690 $f_y{\geq}690MPa$) in eccentrically braced frames with high strength steel combination (HSS-EBFs). The application of high strength steels brings out many advantages, including higher safety ensured by higher strength in elastic state, better economy which results from the smaller member size and structural weight as well as the corresponding welding work, and most importantly, the application of high strength steel in seismic fortification zone, which is helpful to popularize the extensive use of high strength steel. In order to comparison seismic behavior between HSS-EBFs and ordinary EBFs, on the basis of experimental study, four structures with 5, 10, 15 and 20 stories were designed by PBSD method for HSS-EBFs and ordinary EBFs. Nonlinear static and dynamic analysis is applied to all designs. The loading capacity, lateral stiffness, ductility and story drifts and failure mode under rare earthquake of the designs are compared. Analyses results indicated that HSS-EBFs have similar loading capacity with ordinary EBFs while the lateral stiffness and ductility of HSS-EBFs is lower than that of EBFs. HSS-EBFs and ordinary EBFs designed by PBSD method have the similar failure mode and story drift distribution under rare earthquake, the steel weight of HSS-EBFs is 10%-15% lower than ordinary EBFs resulting in good economic efficiency.

Seismic collapse safety of high-rise RC moment frames supported on two ground levels

  • Wu, Yun-Tian;Zhou, Qing;Wang, Bin;Yang, Yeong-Bin;Lan, Tian-Qing
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.349-360
    • /
    • 2018
  • Reinforced concrete (RC) moment frames supported on two ground levels have been widely constructed in mountainous areas with medium to high seismicity in China. In order to investigate the seismic collapse behavior and risk, a scaled frame model was tested under constant axial load and reversed cyclic lateral load. Test results show that the failure can be induced by the development of story yielding at the first story above the upper ground. The strong column and weak beam mechanism can be well realized at stories below the upper ground. Numerical analysis model was developed and calibrated with the test results. Three pairs of six case study buildings considering various structural configurations were designed and analyzed, showing similar dynamic characteristics between frames on two ground levels and flat ground of each pair. Incremental dynamic analyses (IDA) were then conducted to obtain the seismic collapse fragility curves and collapse margin ratios of nine analysis cases designated based on the case study buildings, considering amplification of earthquake effect and strengthening measures. Analysis results indicate that the seismic collapse safety is mainly determined by the stories above the upper ground. The most probable collapse mechanism may be induced by the story yielding of the bottom story on the upper ground level. The use of tie beam and column strengthening can effectively enhance the seismic collapse safety of frames on two ground levels.

Ductility demands and reduction factors for 3D steel structures with pinned and semi-rigid connections

  • Llanes-Tizoc, Mario D.;Reyes-Salazar, Alfredo;Ruiz, Sonia E.;Bojorquez, Eden;Bojorquez, Juan;Leal Graciano, Jesus M.
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.469-485
    • /
    • 2019
  • A numerical investigation regarding local (${\mu}_L$) and story (${\mu}_S$) ductility demand evaluation of steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF), is conducted in this study. The interior connections are modeled, firstly as perfectly pinned (PP), and then as semi-rigid (SR). Three models used in the SAC steel project, representing steel buildings of low-, mid-, and high-rise, are considered. The story ductility reduction factor ($R_{{\mu}S}$) as well as the ratio ($Q_{GL}$) of $R_{{\mu}S}$ to ${\mu}_L$ are calculated. ${\mu}_L$ and ${\mu}_S$, and consequently structural damage, at the PMRF are significant reduced when the usually neglected effect of SR connections is considered; average reductions larger than 40% are observed implying that the behavior of the models with SR connections is superior and that the ductility detailing of the PMRF doesn't need to be so stringent when SR connections are considered. $R_{{\mu}S}$ is approximately constant through height for low-rise buildings, but for the others it tends to increase with the story number contradicting the same proportion reduction assumed in the Equivalent Static Lateral Method (ESLM). It is implicitly assumed in IBC Code that the overall ductility reduction factor for ductile moment resisting frames is about 4; the results of this study show that this value is non-conservative for low-rise buildings but conservative for mid- and high-rise buildings implying that the ESLM fails evaluating the inelastic interstory demands. If local ductility capacity is stated as the basis for design, a value of 0.4 for $Q_{GL}$ seems to be reasonable for low- and medium-rise buildings.

전북 서해안권 국가지질공원의 추진과정과 관련된 갈등 프레임 분석 (An Analysis of the Conflict Frames Related to the Process of the National Geopark in Jeonbuk Western Coast Area, Korea)

  • 정덕호;황경수;조규성;박경진
    • 한국지구과학회지
    • /
    • 제40권3호
    • /
    • pp.283-299
    • /
    • 2019
  • 본 연구의 목적은 국가지질공원 추진 과정에서 지역주민, 지질 전문가 및 지방자치단체 공무원 사이에서 나타나는 갈등 프레임의 양상을 규명하는 데 있다. 이를 위하여 각각 부안과 고창에서 실시된 국가지질공원 추진 관련 주민 공청회의 진행 과정을 참여자들의 사전 동의를 얻어 녹음한 후 텍스트 형태로 전사하였다. 이후 문헌연구를 통해 갈등 프레임을 분석하기 위한 기준 프레임을 개발하였으며, 이를 토대로 3명의 연구자에 의해 갈등 프레임을 분석하였다. 이렇게 분석된 갈등 프레임은 다시 언어네트워크 분석을 활용하여 지역별로 갈등 프레임 간의 구조적 특성을 분석하였으며, 그 결과는 다음과 같다. 먼저, 부안 지역에서는 'Sagree' 프레임, 'Snot' 프레임, 'Sdisagree' 프레임이 높은 위세중심성을 보였고, 언어네트워크의 중심에 위치한 'Snot' 프레임에 Cmexample 프레임, Gharm 프레임, Cmeconomy 프레임 등이 긴밀하게 연결되었다. 반면 고창에서는 'Aresource' 프레임, 'Cmexample' 프레임, 'Gharm' 프레임이 높은 위세중심성을 보였고, 언어네트워크의 중심에 위치한 'Aresource' 프레임에 'Cmexample' 프레임, 'Gharm' 프레임, 'Cmproblemsolution' 프레임 등이 긴밀하게 연결되었다. 이를 통해 부안 지역에서는 아직 이해당사자 사이의 갈등이 진행되고 있고, 고창 지역에서는 자신들의 자원을 자랑스럽게 인식하고 있음을 알 수 있었다. 그리고 부안의 이해당사자들은 갈등 해소에 있어서 경제적 이득에 초점을 둔 반면, 고창의 이해당사자들은 문제 해결에 초점을 두었다. 본 연구의 결과는 국가지질공원 추진에서 나타날 수 있는 갈등 관계를 해소하기 위한 중요한 정보를 제공했다는 점에서 의의가 있다.

Effect of reinforcement strength on seismic behavior of concrete moment frames

  • Fu, Jianping;Wu, Yuntian;Yang, Yeong-bin
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.699-718
    • /
    • 2015
  • The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.

효과적인 MC-BCS-SPL 알고리즘과 예측 구조 방식에 따른 성능 비교 (An Effective MC-BCS-SPL Algorithm and Its Performance Comparison with Respect to Prediction Structuring Method)

  • 류중선;김진수
    • 한국정보통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1355-1363
    • /
    • 2017
  • 최근에 낮은 복잡도의 부호화기를 구현하기 위해 분산 비디오 부호화 와 압축센싱을 결합한 구조로서 분산 압축 비디오 센싱기술에 대한 연구가 활발히 진행되고 있다. 기존에 움직임 보상 블록 압축센싱 기술(MC-BCS-SPL)은 가장 간단한 표본화를 추구하면서 모든 압축센싱 프레임을 갖는 DCVS방식중의 효과적인 방안으로 다루어져 왔다. 이 방식은 키 프레임과 WZ 프레임으로 분리하여 압축센싱한다. 그러나 MC-BCS-SPL 방식은 복호화기에서 WZ 프레임을 복원할 때, 움직임이 큰 영상 시퀀스의 경우에 화질 저하가 발생시키는 단점이 존재한다. 본 논문에서는 이러한 기존의 문제점을 극복하기 위한 개선된 MC-BCS-SPL 방식을 제안한다. 제안한 방식은 연속적인 키 프레임 간 에 존재하는 높은 상관관계를 이용하여 키 프레임을 참조함으로써 초기 영상을 보정한다. GOP 예측 구조 방식에 따른 율-왜곡 성능을 비교한다. 다양한 실험 결과를 통하여 제안하는 알고리즘이 기존 알고리즘보다 더 좋은 화질을 제공함을 보여준다.

영상지도제작을 위한 항공 비디오 영상 등록 (Registration of Aerial Video Frames for Generating Image Map)

  • 김성삼;신성웅;김의명;유환희
    • 한국측량학회지
    • /
    • 제25권4호
    • /
    • pp.279-287
    • /
    • 2007
  • 휴대가 간편하고 해상도가 높은 저가의 비디오 캠코더가 출시되면서 비디오 영상이 다양한 분야에서 활용되고 있다. 이러한 비디오 장치는 휴대용 장치, 모바일용 장비, 소형 헬기, 비행선이나 무인항공기(UAV) 등에 탑재될 수 있다. 본 연구는 무인헬기에서 촬영된 비디오 동영상을 전처리하여 영상프레임을 추출하고, KLT연산자를 사용하여 추출된 특징점을 인접한 프레임에서 추적한 후 이를 이용하여 영상정합을 수행하여 영상지도 제작의 가능성을 분석하였다. 그 결과 항공 비디오 인접영상프레임을 자동으로 등록할 경우 기준영상에서 등록할 프레임간 이동량이 커지면서 자동 특징점 정합률이 다소 낮아지는 것을 알 수 있었으며, 자동 영상등록시 픽셀 이동량에 비해 안정된 촬영조건이 매우 중요함을 알 수 있었다.