• Title/Summary/Keyword: High energy

Search Result 20,175, Processing Time 0.057 seconds

Thermal Conductivity and Pore Characteristics of Low-Temperature Sintered Lightweight Aggregates Mode from Waste Glass and Bottom Ash (바텀애쉬와 폐유리를 사용하여 제조한 저온소성 경량골재의 열전도율과 기공특성)

  • Lee, Han-Baek;Ji, Suk-Won;Seo, Chee-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.851-858
    • /
    • 2010
  • In this study, waste glass and bottom ash were used as basic materials in order to secure a recycling technology of by-products which was mostly discarded and reclaimed. In addition, because softening point of waste glass is less than $700^{\circ}C$ and bottom ash includes combustible material, it was possible to manufacture low-temperature sintering lightweight aggregates for energy saving at $800{\sim}900^{\circ}C$ that it is as much as 20~30% lower than sintering temperature of existing lightweight aggregates. Thermal conductivity of newly-developed lightweight aggregates was 0.056~0.105W/m. K and its porosity was 40.36~84.89%. A coefficient of correlation between thermal conductivity and porosity was -0.97, it showed very high negative correlationship. With this, we were able to verify that porosity is key factor to affect thermal conductivity. Microstructure of lightweight aggregates by $CaCO_3$ content and replacement ratio of bottom ash in the variation of temperature were that $CaCO_3$ content increased along with pore size while replacement ratio of bottom ash increased as pore size decreased. Specially, most pores were open pore instead of closed pore of globular shape when replacement ratio of bottom ash was 30%, and pore size was small about 1/10~1/5 as compared with case in bottom ash 0~20%. In addition, open pore shapes were remarkably more irregular form of open pore in $900^{\circ}C$ than $700^{\circ}C$ or $800^{\circ}C$ when replacement ratio of bottom ash was 30%. We reasoned hereby that these results will influence on absorption increase, strength and thermal conductivity decrease of lightweight aggregates.

Possible Influence of Western North Pacific Monsoon on Tropical Cyclone Activity Around Korea (북서태평양 몬순이 한국 영향태풍활동에 미치는 영향)

  • Choi, Ki-Seon;Park, Ki-Jun;Lee, Kyungmi;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.68-81
    • /
    • 2015
  • In this study, the correlation between the frequency of summer tropical cyclones (TC) affecting areas around Korea over the last 37 years and the western North Pacific monsoon index (WNPMI) was analyzed. A clear positive correlation existed between the two variables, and this high positive correlation remained unchanged even when excluding El Ni$\tilde{n}$o-Southern Oscillation (ENSO) years. To investigate the causes of the positive correlation between these two variables, ENSO years were excluded, after which the 8 years with the highest WNPMI (positive WNPMI phase) and the 8 years with the lowest WNPMI (negative WNPMI phase) were selected, and the average difference between the two phases was analyzed. In the positive WNPMI phase, TCs usually occurred in the eastern waters of the tropical and subtropical western North Pacific, and tended to pass the East China Sea on their way north toward Korea and Japan. In the negative WNPMI phase, TCs usually occurred in the western waters of the tropical and subtropical western North Pacific, and tended to pass the South China Sea on their way west toward the southeastern Chinese coast and the Indochina peninsula. Therefore, TC intensity was higher in the positive WNPMI phase, during which TCs are able to gain sufficient energy from the sea while moving a long distance to areas nearby Korea. TCs also tended to occur more often in the positive WNPMI phase. In the difference between the two phases regarding 850 and 500 hPa streamline, anomalous cyclones were reinforced in the tropical and subtropical western North Pacific, while anomalous anticyclones were reinforced in mid-latitude East Asian areas. Due to these two anomalous pressure systems, anomalous southeasterlies developed in areas near Korea, with these anomalous southeasterlies playing the role of anomalous steering flows making the TCs head toward areas near Korea. Also, due to the anomalous cyclones developed in the tropical and subtropical western North Pacific, more TCs could occur in the positive WNPMI phase.

Possible Effect of Western North Pacific Monsoon on Tropical Cyclone Activity around East China Sea (북서태평양 몬순이 동중국해 주변의 태풍활동에 미치는 영향)

  • Choi, Jae-Won;Cha, Yumi;Kim, Jeoung-Yun
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.194-208
    • /
    • 2017
  • This study analyzed the correlation between tropical cyclone (TC) frequency and the western North Pacific monsoon index (WNPMI), which have both been influential in East China Sea during the summer season over the past 37 years (1977-2013). A high positive correlation was found between these two variables, but it did not change even if El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) years were excluded. To determine the cause of this positive correlation, the highest (positive WNPMI phase) and lowest WNPMIs (negative WNPMI phase) during an eleven-year period were selected to analyze the mean difference between them, excluding ENSO years. In the positive WNPMI phase, TCs were mainly generated in the eastern seas of the tropical and subtropical western North Pacific, passing through the East China Sea and moving northward toward Korea and Japan. In the negative phase, TCs were mainly generated in the western seas of the tropical and subtropical western North Pacific, passing through the South China Sea and moving westward toward China's southern regions. Therefore, TC intensity in the positive phase was stronger due to the acquisition of sufficient energy from the sea while moving a long distance up to East Asia's mid-latitude. Additionally, TCs occurred more in the positive phase. Regarding the difference in 850 hPa and 500 hPa stream flows between the two phases, anomalous cyclones were strengthened in the tropical and subtropical western North Pacific, whereas anomalous anticyclones were strengthened in East Asia's mid-latitude regions. Due to these two anomalous pressure systems, anomalous southeasterlies developed in East China Sea, which played a role in the anomalous steering flows that moved TCs into this region. Furthermore, due to the anomalous cyclones that developed in the tropical and subtropical western North Pacific, more TCs could be generated in the positive phase.

Analysis of Misconception on the North Korea Cold Current in Secondary-School Science and Earth Science Textbooks (중등학교 과학 및 지구과학 교과서 북한한류 오개념 분석)

  • Park, Kyung-Ae;Lee, Jae Yon;Lee, Eun-Young;Kim, Young Ho;Byun, Do-Seong
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.490-503
    • /
    • 2020
  • Oceanic current and circulation have played an important role as regulators of the earth's energy distribution. The science and earth science textbooks for secondary schools based on the 2015 revised curriculum included a misconception of the seasonal variation of the North Korea Cold Current (NKCC) among the currents around the Korean Peninsula. To analyze this, the contents related to the NKCC were collected in the textbooks of five middle and six high schools, and a questionnaire survey was conducted on 30 middle school science teachers. The survey consisted of questions about whether the textbook mentions the NKCC and whether there is an error in the concept of the temporal variation of the NKCC, and the teachers' free opinions related to the NKCC were collected. The textbooks suggest that the NKCC is strongest in winter, which is not consistent with scientific findings so far. In fact, there is scientific evidence that the NKCC is the strongest in the summer. In this study, the causes and processes of misconceptions were investigated. According to an analysis of the survey, most teachers had an knowledge that the NKCC is stronger in winter. These errors began with a misconception of the terms, which teachers had imprinted on their memory as firm knowledge. These misconceptions originated from the knowledge that teachers themselves acquired from their secondary school years and have long been transferred back to teachers and students without revising the misconceptions of textbooks. This situation is expected to have a seriously recurrent structure that produces students' serious misconceptions in the future. Therefore, this study summarizes existing results on the seasonal variability of the NKCC and suggests the necessity for re-education to improve teachers' professionalism and to eliminate the misconceptions of teachers and students.

THE MORPHOLOGICAL OBSERVATION OF HUMAN GINGIVAL FIBROBLASTS ATTACHMENT AND SPREADING ON THE MECHANICAL TREATED TITANIUM PLASMA SPRAYED IMPLANT SURFACE (기계적 표면 처리된 TITANIUM PLASMA SPRAYED IMPLANT에 대한 치은섬유아세포전개양상의 형태학적 관찰)

  • Whang, Yun-Hi;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.741-755
    • /
    • 1995
  • Currently titanium is the material of choice for implants because of its biological acceptance. This high degree of biocompatibility is thought to result, in part, from the protective and stable oxide layer that presumably aids in the bonding of the extracellular matrix at the implant-tissue interface. Endosseous dental implants are interfaced with bone, connective tissue, and epithelium when implanted into the jaw bone. The soft tissue interface including connective tissue and epithelium is one of the most critical factors in the determination of implant maintenance and prognosis. For maintenance of failing or failed implants, it is essential to treat the implant fixture surface to remove bacterial endotoxins and make a surface tolerated by surrounding soft and hard tissues. In this study, the effect of mechanical treatment on titanium plasma sprayed implant on adhesiveness and proliferation of human gingival fibroblasts and changed surface characteristics were studied. titanium plasma sprayed discs manufactured by Friedrichsfeld company were treated with loaw speed stone bur, a rubber point and a jetpolisher. Its surface components were analyzed with Energy dispersive X-ray spectroscopy to evaluate whether the surface characteristics were altered or not. To observe the spreading pattern of the human gingival fibroblasts which attached to the all specimens author used the scanning electron microscope. The results were as follows : Pure titanium and plasma sprayed titanium, stone polished titanium showed titanium peak and small amout of aluminum, so there was no alteration on surface characteristics. Under the scanning electron microscopic examination in the initial attachment of human gingival fibroblast, there was a slight enhancement in pure titanium, stone polished titanium than plasma sprayed titanium. After 6 hours, the pure titanium and stone polished titanium showed human gingival fibroblasts were elongated and connected with numerous processes. Human gingival fibroblasts were more intimately attached on the pure titanium discs than on the other discs. The human gingival fibroblasts attached on the plasma sprayed titanium by thin and elongated processes. After 24 hours, the human gingival fibroblasts connected with each other via numerous processes and compeletly covered the pure titanium and stone polshed titanium discs. Human gingival fibroblasts had multiple point contacts with more long and thin lamellopodia and showed a little bare surface on plasma sprayed titanium discs.

  • PDF

Development of Manual Multi-Leaf Collimator for Proton Therapy in National Cancer Center (국립암센터의 양성자 치료를 위한 수동형 다엽 콜리메이터 개발)

  • Lee, Nuri;Kim, Tae Yoon;Kang, Dong Yun;Choi, Jae Hyock;Jeong, Jong Hwi;Shin, Dongho;Lim, Young Kyung;Park, Jeonghoon;Kim, Tae Hyun;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • Multi-leaf collimator (MLC) systems are frequently used to deliver photon-based radiation, and allow conformal shaping of treatment beams. Many proton beam centers currently make use of aperture and snout systems, which involve use of a snout to shape and focus the proton beam, a brass aperture to modify field shape, and an acrylic compensator to modulate depth. However, it needs a lot of time and cost of preparing treatment, therefore, we developed the manual MLC for solving this problem. This study was carried out with the intent of designing an MLC system as an alternative to an aperture block system. Radio-activation and dose due to primary proton beam leakage and the presence of secondary neutrons were taken into account during these iterations. Analytical calculations were used to study the effects of leaf material on activation. We have fabricated tray model for adoption with a wobbling snout ($30{\times}40cm^2$) system which used uniform scanning beam. We designed the manual MLC and tray and can reduce the cost and time for treatment. After leakage test of new tray, we upgrade the tray with brass and made the safety tool. First, we have tested the radio-activation with usually brass and new brass for new manual MLC. It shows similar behavior and decay trend. In addition, we have measured the leakage test of a gantry with new tray and MLC tray, while we exposed the high energy with full modulation process on film dosimetry. The radiation leakage is less than 1%. From these results, we have developed the design of the tray and upgrade for safety. Through the radio-activation behavior, we figure out the proton beam leakage level of safety, where there detects the secondary particle, including neutron. After developing new design of the tray, it will be able to reduce the time and cost of proton treatment. Finally, we have applied in clinic test with original brass aperture and manual MLC and calculated the gamma index, 99.74% between them.

Evaluation of the dose distribution in Mapcheck using Enhanced Dynamic Wedge (Enhanced Dynamic Wedge를 사용한 Mapcheck에서의 선량분포 평가)

  • Kang, Su-Man;Jang, Eun-Sun;Lee, Byung-Koo;Jung, Bong-Jae;Shin, Jung-Sub;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.343-349
    • /
    • 2012
  • Intensity Modulated Radiotherapy (IMRT) is increasing its use recently due to its benefits of minimizing the dose on surrounding normal organs and being able to target a high dose specifically to the tumor. The study aims to measure and evaluate the dose distribution according to its dynamic changes in Mapcheck. In order to verify the dose distribution by EDW angle($10^{\circ}$,$15^{\circ}$,$20^{\circ}$,$25^{\circ}$,$30^{\circ}$,$45^{\circ}$,$60^{\circ}$), field size (asymmetric field) and depth changes (1.5 cm, 5.0 cm) using IMRT in Clinac ix, a solid phantom was placed on the Mapcheck and 100MU was exposed by 6 MV, 10MV X-ray. Using a 6MV, 10MV energy, the percentage depth dose according to a dynamic changes at a maximum dose depth (1.5 cm) and at 5.0 cm depth showed the value difference of maximum 0.6%, less than 1%, which was calculated by a treatment program device considering the maximum dose depth at the center as 100%, the percentage depth dose was in the range between 2.4% and 7.2%. Also, the maximum value difference of a percentage depth dose was 4.1% in Y2-OUT direction, and 1.7% in Y1-IN direction. When treating a patient using a wedge, it is considered that using an enhanced dynamic wedge is effective to reduce the scattered dose which induces unnecessary dose to the surroundings. In particular, when treating a patient at clinic, a treatment must be performed considering that the wedge dose in a toe direction is higher than the dose in a heel direction.

Current status of sweetpotato genomics research (고구마 유전체 연구현황 및 전망)

  • Yoon, Ung-Han;Jeong, Jae Cheol;Kwak, Sang-Soo;Yang, Jung-Wook;Kim, Tae-Ho;Lee, Hyeong-Un;Nam, Sang-Sik;Hahn, Jang-Ho
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.161-167
    • /
    • 2015
  • Sweetpotato [Ipomoea batatas (L.) Lam] grows well in harsh environmental conditions, and is cultivated as one of the top seven food crops in the world. Recently, sweetpotato is drawing interest from people as a healthy food because it is high in dietary fiber, vitamins, carotenoids and overall nutrition value. However, few studies have been conducted on sweetpotato genome sequencing in spite of its importance. This review is aimed at increasing the efficiency of sweetpotato genome sequencing research as well as establishing a base for gene utilization in order to control useful traits. Recently, animal and plant genome sequencing projects increased significantly. However, sweetpotato genome sequencing has not been performed due to polyploidy and heterogeneity problems in its genome. Meanwhile research on its transcriptome has been conducted actively. Recently, a draft of the diploid sweetpotato genome was reported in 2015 by Japanese researchers. In addition, the Korea-China-Japan Trilateral Research Association of Sweetpotato (TRAS) has conducted research on gene map construction and genome sequencing of the hexaploid sweetpotato Xushu 18 since 2014. The Bill & Melinda Gates Foundation launched the 'sweetpotato genomic sequencing to develop genomic tools for Sub-Sahara Africa breeding program'. The chloroplast genome sequence acquired during sweetpotato genome sequencing is used in evolutionary analyses. In this review, the trend of research in the sweetpotato genome sequencing was analyzed. Research trend analysis like this will provide researchers working toward sweetpotato productivity and nutrient improvement with information on the status of sweetpotato genome research. This will contribute to solving world food, energy and environmental problems.

Genetic Variation and Phylogenetic Relationship of Taraxacum Based on Chloroplast DNA (trnL-trnF and rps16-trnK) Sequences (엽록체 DNA (trnL-trnF, rps16-trnK) 염기서열에 의한 국내 민들레속 유전자원의 유전적 변이와 유연관계 분석)

  • Ryu, Jaihyunk;Lyu, Jae-il;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.522-534
    • /
    • 2017
  • This study was investigated genetic variation in 24 Taraxacum accessions from various regions in South Korea based on the sequences of two chloroplast DNA (cpDNA) regions (trnL-trnF and rps16-trnK). T. mongolicum, T. officinale, and T. laevigatum were triploid, and T. coreanum and T. coreanum var. flavescens were tetraploid. The trnL-trnF region in native Korean dandelions (T. mongolicum, T. coreanum, and T. coreanum var. flavescens) were ranged from 931 to 935 bp in length, and that of naturalized dandelions were ranged from 910 bp (T. officinale) to 975 bp (T. laevigatum) in length. The rps16-trnK region in T. mongolicum, T. coreanum, T. coreanum var. flavescens, T. officinale, and T. laevigatum was 882-883 bp, 875-881 bp, 878-883 bp, 874-876 bp, and 847-876 bp, respectively, in length. The sequence similarity matrix of the trnL-trnF region ranged from 0.860 to 1.00 with an average of 0.949, and that of the rps16-trnK region ranged from 0.919 to 1.000 with an average of 0.967. According to the phylogenetic analysis, the Korean native taxa and naturalized taxa were divided independent clade in two cpDNA region. T. coreanum var. flavescens clustered only with T. coreanum, and there were no significant differences in their nucleotide sequences. The finding that two accessions (T. coreanum; Jogesan, T. mongolicum; Gangyang) had a high level of genetic variation suggests their utility for breeding materials.

Expression of CsRCI2s by NaCl stress reduces water and sodium ion permeation through CsPIP2;1 in Camelina sativa L.

  • Kim, Hyun-Sung;Lim, Hyun-Gyu;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.194-194
    • /
    • 2017
  • Camelina (Camelina sativa L.) is a potential bio-energy crop that has short life cycle about 90 days and contains high amount of unsaturated fatty acid which is adequate to bio-diesel production. Enhancing environmental stress tolerance is a main issue to increase not only crop productivity but also big mass production. CsRCI2s (Rare Cold Inducible 2) are cold and salt stress related protein that localized at plasma membrane (PM) and assume to be membrane potential regulation factor. These proteins can be divide into C-terminal tail (CsRCI2D/E/F/G) or no-tail group (CsRCI2A/B/C/H). However, function of CsRCI2s are less understood. In this study, physiological responses and functional characterization of CsRCI2s of Camelina under salt stress were analyzed. Full-length CsRCI2s (A/B/E/F) and CsPIP2;1 sequences were confirmed from Camelina genome browser. Physiological investigations were carried out using one- or four-week-old Camelina under NaCl stress with dose and time dependent manner. Transcriptional changes of CsRCI2A/B/E/F and CsPIP2;1 were determined using qRT-PCR in one-week-old Camelina seedlings treated with NaCl. Translational changes of CsRCI2E and CsPIP2;1 were confirmed with western-blot using the antibodies. Water transport activity and membrane potential measurement were observed by cRNA injected Xenopus laevis oocyte. As results, root growth rate and physiological parameters such as stomatal conductance, chlorophyll fluorescence, and electrolyte leakage showed significant inhibition in 100 and 150 mM NaCl. Transcriptional level of CsPIP2;1 did not changed but CsRCI2s were significantly increased by NaCl concentration, however, no-tail type CsRCI2A and CsRCI2B increased earlier than tail type CsRCI2E and CsRCI2F. Translational changes of CsPIP2;1 was constitutively maintained under NaCl stress. But, accumulation of CsRCI2E significantly increased by NaCl stress. CsPIP2;1 and CsRCI2A/B/E/F co-expressed Xenopus laevis oocyte showed decreased water transport activity as 61.84, 60.30, 62.91 and 76.51 % at CsRCI2A, CsRCI2B, CsRCI2E and CsRCI2F co-expression when compare with single expression of CsPIP2;1, respectively. Moreover, oocyte membrane potential was significantly hyperpolarized by co-expression of CsRCI2s. However, higher hyperpolarized level was observed in tail-type CsRCI2E and CsRCI2F than others, especially, CsRCI2E showed highest level. It means transport of $Na^+$ ion into cell is negatively regulated by expression of CsRCI2s, and, function of C-terminal tail is might be related with $Na^+$ ion influx. In conclusion, accumulation of NaCl-induced CsRCI2 proteins are related with $Na^+$ ion exclusion and prevent water loss by CsPIP2;1 under NaCl stress.

  • PDF