• 제목/요약/키워드: High efficient

검색결과 9,204건 처리시간 0.036초

자동차 경량화를 위한 알루미늄 합금의 강변형 가공 및 고능률 용접기술에 관한 동향 (High Efficient Welding Technology of the Car Bodies)

  • 김환태;길상철
    • Journal of Welding and Joining
    • /
    • 제34권4호
    • /
    • pp.62-66
    • /
    • 2016
  • The trend of the fabrication technology of high strength, high toughness aluminum alloys by the severe plastic deformation(SPD) process and the welding technology of lightweight alloys in the automobile has been studied. The lightweight aluminum alloys can reduce vehicle weight, while stringently demanding the high quality and efficient welding techniques, to produce the best weldments. Among the production technologies, welding plays an important role in the fabrication of lightweight vehicle structure. This paper covers the scientometric analysis of the severe plastic deformations of lightweight alloys and the welding technology in the automobile which are based on the published research works in the 'HPT, ECAP and rolling', and 'welding technology of the automobile' obtained from Web of Science, and deals with the details of the background data of the HPT, ECAP, and rolling of lightweight alloys, and welding technology of the automobile technology.

Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized Electron and Hole transport layers

  • Khan, M.A.;Xu, Wei;Wei, Fuxiang;Bai, Yu;Jiang, X.Y.;Zhang, Z.L.;Zhu, W.Q.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1103-1107
    • /
    • 2007
  • Highly efficient organic electroluminescent devices (OLEDs) based on 4,7- diphenyl-1, 10- phenanthroline (BPhen) as the electron transport layer (ETL), tris (8-hydroxyquinoline) aluminum ($Alq_3$) as the emission layer (EML) and N,$\acute{N}$-bis-[1-naphthy(-N,$\acute{N}$diphenyl-1,1´-biphenyl-4,4´-diamine)] (NPB) as the hole transport layer (HTL) were developed. The typical device structure was glass substrate/ ITO/ NPB/$Alq_3$/ BPhen/ LiF/ Al. Since BPhen possesses a considerable high electron mobility of $5\;{\times}\;10^{-4}\;cm^2\;V^{-1}\;s^{-1}$, devices with BPhen as ETL can realize an extremely high luminous efficiency. By optimizing the thickness of both HTL and ETL, we obtained a highly efficient OLED with a current efficiency of 6.80 cd/A and luminance of $1361\;cd/m^2$ at a current density of $20\;mA/cm^2$. This dramatic improvement in the current efficiency has been explained on the principle of charge balance.

  • PDF

A Study on the Model Driven Development of the Efficient Combat System Software Using UML

  • Jung, Seung-Mo;Lee, Young-Ju
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권10호
    • /
    • pp.115-123
    • /
    • 2016
  • In this paper, we propose a Model Driven Development using UML(Unified Modeling Language) in an efficient Combat System Software development methods. UML is managed by the OMG (Object Management Group) as a Unified Modeling Language. Recently, In developing the software for the system, development time is contrary to a short, while it must meet a number of requirements of our customers. If you develop a non-efficient software early, the structure of the software become more complex in proportion to the number of requirements. As a result, a serious problem in the system, such as an increase in defective products due to the lowering of the reliability and communication problems between the developer has occurred. To overcome those problems, the aim of this paper is to develop a reusable high efficient Combat System Software by applying Model-Centric Development (Not Code-Centric Development). If Combat System Software development method using the UML proposed in this paper is used, easy communication among developers can help reduce the serious errors in systems. Also, it has the advantage that the future needs of software maintenance/repair become easy by using high readability object Model.

이미지 센서 모듈을 위한 자동-초점 기능의 전력-효율적인 구동 방법에 대한 연구 (A Research of Power-Efficient Driving Scheme for Auto-Focus on Image Sensor Module)

  • 차상현;박찬우;이연중;황병원;권오조;박득희;권경수;이재신;황신환
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1197-1202
    • /
    • 2009
  • We present a power-efficient driving scheme that consists of piezoelectric actuator and driver IC for AF (Auto-Focus) on ISM (Image Sensor Module). The piezoelectric actuator is more power-efficient than conventional voice coil motor actuator. And high power-efficiency driver IC is designed. So the proposed driving scheme using designed piezoelectric actuator and driver IC is more close to recent trend of green IT. The diver IC should guarantee fast and accurate performance. So, the optimum driving method and high accurate frequency synthesizer are proposed. The die area of designed driver IC is $2.0{\times}1.6mm^2$ and power consumption is 2.8mW.

Breast Tumor Cell Nuclei Segmentation in Histopathology Images using EfficientUnet++ and Multi-organ Transfer Learning

  • Dinh, Tuan Le;Kwon, Seong-Geun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제24권8호
    • /
    • pp.1000-1011
    • /
    • 2021
  • In recent years, using Deep Learning methods to apply for medical and biomedical image analysis has seen many advancements. In clinical, using Deep Learning-based approaches for cancer image analysis is one of the key applications for cancer detection and treatment. However, the scarcity and shortage of labeling images make the task of cancer detection and analysis difficult to reach high accuracy. In 2015, the Unet model was introduced and gained much attention from researchers in the field. The success of Unet model is the ability to produce high accuracy with very few input images. Since the development of Unet, there are many variants and modifications of Unet related architecture. This paper proposes a new approach of using Unet++ with pretrained EfficientNet as backbone architecture for breast tumor cell nuclei segmentation and uses the multi-organ transfer learning approach to segment nuclei of breast tumor cells. We attempt to experiment and evaluate the performance of the network on the MonuSeg training dataset and Triple Negative Breast Cancer (TNBC) testing dataset, both are Hematoxylin and Eosin (H & E)-stained images. The results have shown that EfficientUnet++ architecture and the multi-organ transfer learning approach had outperformed other techniques and produced notable accuracy for breast tumor cell nuclei segmentation.

MoS2의 형상변조를 통한 광전기화학 성능 촉진 (Promoting Photoelectrochemical Performance Through the Modulation of MoS2 Morphology)

  • 서동범;김의태
    • 한국재료학회지
    • /
    • 제32권1호
    • /
    • pp.30-35
    • /
    • 2022
  • The development of advanced materials to improve the efficiency of photoelectrochemical (PEC) water splitting paves the way for widespread renewable energy technologies. Efficient photoanodes with strong absorbance in visible light increases the effectiveness of solar energy conversion systems. MoS2 in a two-dimensional semiconductor that has excellent absorption performance in visible light and high catalytic activity, showing considerable potential as an agent of PEC water splitting. In this study, we successfully modulated the MoS2 morphology on indium tin oxide substrate by using the metalorganic chemical vapor deposition method, and applied the PEC application. The PEC photocurrent of the vertically grown MoS2 nanosheet structure significantly increased relative to that of MoS2 nanoparticles because of the efficient transfer of charge carriers and high-density active sites. The enhanced photocurrent was attributed to the efficient charge separation and improved light absorption of the MoS2 nanosheet structure. Meanwhile, the photocurrent property of thick nanosheets decreased because of the limit imposed by the diffusion lengths of carriers. This study proposes a valuable photoelectrode design with suitable nanosheet morphology for efficient PEC water splitting.

고효율 Oval형 EGR 쿨러 개발에 관한 연구 (A Study on Development of Oval Type High Efficient EGR Cooler)

  • 이준;문전일;한창석
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.89-94
    • /
    • 2011
  • The EGR system is one of important components in diesel engine. The regulation on NOx emission has been tightened up. Therefore, it is a significant issue to develop and commercialize the high efficient EGR cooler system that reduces NOx emission in DI diesel engine. Key performance factor of the EGR cooler system is how to properly design both wavy cooling fins and gas tubes. This paper proposes a high efficient EGR cooler that has been upgraded with both the optimized wavy cooling fins and the improved shape of structure. The evaluation of the heat exchange efficiency, outlet temperature, and gas pressure drop of the EGR cooler is performed with the prototype of the proposed EGR cooler. The result shows a good solution and will be implemented to the model of a clean diesel engine being developed for both domestic and overseas market.

고능률 가공을 위한 절삭 동력 기반의 이송 속도 최적화 (Cutting Power Based Feedrate Optimization for High-Efficient Machining)

  • 조재완;김석일
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.333-340
    • /
    • 2005
  • Feedrate is one of the factors that have the significant effects on the productivity, qualify and tool life in the cutting mechanism as well as cutting velocity, depth of cut and width of cut. In this study, in order to realize the high-efficient machining, a new feedrate optimization method is proposed based on the concept that the optimum feedrate can be derived from the allowable cutting power since the cutting power can be predicted from the cutting parameters as feedrate, depth of cut, width of cut, chip thickness, engagement angle, rake angle, specific cutting force and so on. Tool paths are extracted from the original NC program via the reverse post-processing process and converted into the infinitesimal tool paths via the interpolation process. And the novel NC program is reconstructed by optimizing the feedrate of infinitesimal tool paths. Especially, the fast feedrate optimization is realized by using the Boolean operation based on the Goldfeather CSG rendering algorithm, and the simulation results reveal the availability of the proposed optimization method dramatically reducing the cutting time and/or the optimization time. As a result, the proposed optimization method will go far toward improving the productivity and qualify.

A Novel Scalable and Storage-Efficient Architecture for High Speed Exact String Matching

  • Peiravi, Ali;Rahimzadeh, Mohammad Javad
    • ETRI Journal
    • /
    • 제31권5호
    • /
    • pp.545-553
    • /
    • 2009
  • String matching is a fundamental element of an important category of modern packet processing applications which involve scanning the content flowing through a network for thousands of strings at the line rate. To keep pace with high network speeds, specialized hardware-based solutions are needed which should be efficient enough to maintain scalability in terms of speed and the number of strings. In this paper, a novel architecture based upon a recently proposed data structure called the Bloomier filter is proposed which can successfully support scalability. The Bloomier filter is a compact data structure for encoding arbitrary functions, and it supports approximate evaluation queries. By eliminating the Bloomier filter's false positives in a space efficient way, a simple yet powerful exact string matching architecture is proposed that can handle several thousand strings at high rates and is amenable to on-chip realization. The proposed scheme is implemented in reconfigurable hardware and we compare it with existing solutions. The results show that the proposed approach achieves better performance compared to other existing architectures measured in terms of throughput per logic cells per character as a metric.