• Title/Summary/Keyword: High efficiency apparatus

Search Result 119, Processing Time 0.02 seconds

Un-Cooled High Efficient Solar Lighting System and its Application (비냉각형 고효율 태양광 채광시스템 및 응용에 관한 연구)

  • Lee, Hoe-Youl;Kim, Myoung-Jin;Shin, Seo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1394-1402
    • /
    • 2011
  • This paper describes solar light collecting system which employs parabolic reflector and Fresnel lens and its industrial application. We have introduced second-stage optical system so that it makes optical fiber overcome its numerical aperture limitation and also it makes focused light become collimated, which results in decreased light energy density. As result of these, light collecting efficiency become maximized and the system does not require separate cooling apparatus any more. The developed solar lighting system together with artificial light source like LED has been applied to plant factory as a hybrid lighting source. This makes us save electric energy for artificial lighting during day time. The intensity of LED light in the hybrid lighting system is controlled automatically according to ambient-light-sensor installed in the system so that the light intensity for a plant always keeps the same level no matter how the sun light changes. For a plant factory whose size is 330 square meters, when solar lighting system is applied, 28,080KWh electric energy can be saved per month.2 times.

Effect of Bed Insert Geometry on CO Conversion of WGS Catalyst in a Fluidized Bed Reactor for SEWGS Process (SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양이 WGS 촉매의 CO 전환율에 미치는 영향)

  • Ryu, Hojung;Kim, Hana;Lee, Dongho;Jin, Gyoungtae;Park, Youngcheol;Jo, Sungho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.535-542
    • /
    • 2013
  • To enhance the performance of SEWGS system by holding the WGS catalyst in a SEWGS reactor using bed inserts, effect of bed insert geometry on CO conversion of WGS catalyst was measured and investigated. Small scale fluidized bed reactor was used as experimental apparatus and tablet shaped WGS catalyst and sand particle were used as bed materials. The cylinder type and the spring type bed inserts were used to hold the WGS catalysts. The CO conversion of WGS catalyst with the change of steam/CO ratio was determined based on the exit gas analysis. Moreover, gas flow direction was confirmed by bed pressure drop measurement for each case. The measured CO conversion using the bed inserts showed high value comparable to previous results even though at low catalyst content. Most of input gas flowed through the bed center side when we charged tablet type catalyst into the cylinder type bed insert and this can cause low $CO_2$ capture efficiency because the possibility of contact between input gas and $CO_2$ absorbent is low in this case. However, the spring type bed insert showed good reactivity and good distribution of gas, and therefore, the spring type bed insert was selected as the best bed insert for SEWGS process.

Secretion Characteristics of Foreign Glucoamylase from Recombinant Plasmid-Harboring and Chromosome-Integrated Saccharomyces cerevisiaes (재조합 플라스미드 포함 효모와 염색체 삽입 효모에서의 외래 Glucoamylase의 분비 특성)

  • 차형준;조광명유영제
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.532-540
    • /
    • 1994
  • Secretion efficiency is generally affected by promoter, signal sequence, characteristics of foreign protein and host. Secretion efficiencies of glucoamylase in recombinant plasmid-harboring yeast and chromosome-integrated yeast which had STA signal sequences were 74% and 65% at the 4th day of incubation, respectively. The high secretion efficiencies of the yeasts were obtained due to the fact that the expression levels were not reached at the secretory apparatus capacities of the host yeasts. In both yeasts, most of the intracellular glucoamylase were detected in cytoplasm and small portion (below 10%) of glucoamylase were located in periplasm. The characteristics of secreted heterologous glucoamylase from recombinant Saccharomyces cerevisiaes were investigated by using Western blot analysis. The secreted mature glucoamylase was heterogeneous and its molecular weight was about 200 to 300 kilodalton. The carbohydrate content of mature glucoamylase was higher than 80%, and several bands of about 55 to 65 kilodalton indicate the endoplasmic reticulum forms of intracellular glucoamylase.

  • PDF

A Study on the Profile Design of Sweeping Auger for the Combined Grain Drying and Storage System (일체형 곡물 건조/저장 시스템 개발을 위한 나선형 배출기구의 가변 단면 형상 설계에 관한 연구)

  • Choi, Kab-Yong;Oh, Tae-Il;Shin, Sung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1473-1479
    • /
    • 2009
  • This study have been carried out as a part of R&D project to develop a low cost high efficiency combined grain drying & storage system. The design of sweeping auger must meet the various conditions : capacity and dimensions of silo, discharging capacity of auger, operation conditions of auger such as revolution and rotation and density of grains and even the first-in & first-out of grains in the system. Through the experimental observations with the apparatus which enables the direct observation of discharging behavior of grains, the limitations of the performance of existing straight type auger was observed. Generalized mathematical model for the profile of new variable section sweeping auger was obtained, which ensures the uniform descending of grains and also meets various operating conditions. The experimental results with a prototype sweeping auger showed that the mathematical model for the variable section sweeping auger was quitely correct.

Analysis of Powder Packing for Alumina Using Design of Experiment with Mixture and Vibration (혼합물실험계획법과 가진을 이용한 알루미나 파우더의 충진율 분석)

  • Jeon, Sangjun;Kim, Youngshin;Yang, Daejong
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.330-336
    • /
    • 2021
  • Alumina powder is one of the widely used materials for industry, but there is a problem that the strength of the product changes depending on the powder packing state. To solve the above problem, previous studies have been conducted to increase the particle packing efficiency, but most of the existing studies analyzed the packing characteristics of millimeter-scale particles, so the physical properties are different from those of the micrometer scale. It is difficult to apply to the micrometer scale. In this paper, a three-step experiment was performed using a statistical method to increase packing using micrometer-scale alumina powder. First, a size combination with high packing and a mixing ratio were selected using the mixture test design method, and an appropriate excitation frequency was selected by analyzing the height change according to the frequency change in the vibration test apparatus. Finally, an alumina powder packing experiment was performed based on the experimental results mentioned above. As a result, it was confirmed that the maximum height variation was 42% higher than the maximum value of the 155 measurements performed when selecting the packing size combination. It is thought that this study will serve as basic data for processing and packing research using fine powder.

Effects of Bed Insert Geometry and Shape of WGS Catalysts on CO Conversion in a Fluidized Bed Reactor for SEWGS Process (SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양 및 WGS 촉매의 형상이 CO 전환율에 미치는 영향)

  • Ryu, Hojung;Kim, Hana;Lee, Dongho;Bae, Dalhee;Hwang, Taeksung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.150-159
    • /
    • 2013
  • To enhance the performance of SEWGS system by holding the WGS catalyst in a SEWGS reactor using bed inserts, effects of insert geometry and shape of WGS catalysts on CO conversion were measured and investigated. Small scale fluidized bed reactor was used as experimental apparatus and WGS catalyst (particle and tablet) and sand were used as bed materials. The parallel wall type and cross type bed inserts were used to hold the WGS catalysts. The CO conversion with steam/CO ratio was determined based on the exit gas analysis. The measured CO conversion using the bed inserts showed high value comparable to physical mixing cases. Moreover, gas flow direction was confirmed by bed pressure drop measurement for each case. Most of input gas flowed through the catalyst side when we charged tablet type catalyst into the bed insert and this can cause low $CO_2$ capture efficiency because the possibility of contact between input gas and $CO_2$ absorbent is low in this case. New bed insert geometry was proposed based on the results from this study to enhance contact between input gas and WGS catalyst and $CO_2$ absorbent.

High efficiency of homemade culture medium supplemented with GDF9-β in human oocytes for rescue in vitro maturation

  • Mohsenzadeh, Mehdi;Khalili, Mohammad Ali;Anbari, Fatemeh;Vatanparast, Mahboubeh
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.2
    • /
    • pp.149-158
    • /
    • 2022
  • Objective: Optimizing culture media for the incubation of immature oocytes is a vital strategy to increase the oocyte maturation rate during in vitro maturation (IVM) programs. This study evaluated the IVM and fertilization rates of human germinal vesicle (GV) and metaphase I (MI) oocytes using two different maturation media (commercial and homemade) with or without growth differentiation factor 9-β (GDF9-β). supplementation. Methods: Immature oocytes from intracytoplasmic sperm injection (ICSI) cycles were collected and assigned to one of two IVM culture media (commercial or homemade; cleavage-stage base). After maturation, MII oocytes were examined under an inverted microscope for the presence of the polar body, zona pellucida (ZP) birefringence, and meiotic spindle (MS) visualization after maturation in four conditions (commercial or homemade medium, with or without GDF9-β. ICSI was done for matured oocytes, and fertilization was confirmed by the visualization of two distinct pronuclei and two polar bodies. Results: No significant differences were found between the two culture media in terms of the time and rate of oocyte maturation or the rate of fertilization (p>0.05). Growth factor supplementation increased the 24-hour maturation rate for both GV and MI oocytes only in homemade medium. The maturation rate after 24 hours was higher for MI oocytes (p<0.05). Similar results were observed for MS visualization and ZP structure in both types of media (p>0.05). Conclusion: Higher rates of oocyte maturation and fertilization were observed after application of homemade medium supplemented with GDF9-β. Therefore, this combination may be recommended as an alternative for clinical IVM programs.

Modeling of High-throughput Uranium Electrorefiner and Validation for Different Electrode Configuration (고효율 우라늄 전해정련장치 모델링 및 전극 구성에 대한 검증)

  • Kim, Young Min;Kim, Dae Young;Yoo, Bung Uk;Jang, Jun Hyuk;Lee, Sung Jai;Park, Sung Bin;Lee, Han soo;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.321-332
    • /
    • 2017
  • In order to build a general model of a high-throughput uranium electrorefining process according to the electrode configuration, numerical analysis was conducted using the COMSOL Multiphysics V5.3 electrodeposition module with Ordinary Differential Equation (ODE) interfaces. The generated model was validated by comparing a current density-potential curve according to the distance between the anode and cathode and the electrode array, using a lab-scale (1kg U/day) multi-electrode electrorefiner made by the Korea Atomic Energy Research Institute (KAERI). The operating temperature was $500^{\circ}C$ and LiCl-KCl eutectic with 3.5wt% $UCl_3$ was used for molten salt. The efficiency of the uranium electrorefining apparatus was improved by lowering the cell potential as the distance between the electrodes decreased and the anode/cathode area ratio increased. This approach will be useful for constructing database for safety design of high throughput spent nuclear fuel electrorefiners.

Study of the Electrolytic Reduction of Uranium Oxide in LiCl-Li$_{2}$O Molten Salts with an Integrated Cathode Assembly

  • Park Sung-Bin;Seo Chung-seok;Kang Dae-Seung;Kwon Seon-Gil;Park Seong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The electrolytic reduction of uranium oxide in a LiCl-Li$_{2}$O molten salt system has been studied in a 10 g U$_{3}$O$_{8}$ /batch-scale experimental apparatus with an integrated cathode assembly at 650$^{\circ}C$. The integrated cathode assembly consists of an electric conductor, the uranium oxide to be reduced and the membrane for loading the uranium oxide. From the cyclic voltammograms for the LiCl-3 wt$\%$ Li$_{2}$O system and the U$_{3}$O$_{8}$-LiCl-3 wt$\%$ Li$_{2}$O system according to the materials of the membrane in the cathode assembly, the mechanisms of the predominant reduction reactions in the electrolytic reactor cell were to be understood; direct and indirect electrolytic reduction of uranium oxide. Direct and indirect electrolytic reductions have been performed with the integrated cathode assembly. Using the 325-mesh stainless steel screen the uranium oxide failed to be reduced to uranium metal by a direct and indirect electrolytic reduction because of a low current efficiency and with the porous magnesia membrane the uranium oxide was reduced successfully to uranium metal by an indirect electrolytic reduction because of a high current efficiency.

  • PDF

Efficiency of Geothermal Energy Generation Assessed from Measurements of Deep Depth Geothermal Conductivity (고심도 지중열전도도에 의한 지열 응용의 효율성)

  • Cho, Heuy-Nam;Lee, Dal-Heui;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.233-241
    • /
    • 2012
  • The objectives of this study were to test geothermal conductivity (k), water velocity, water quantity, and pipe pressure from a ground heat exchanger in the field, and then to analyze these data in relation to the effectiveness and economical efficiency for application of geothermal energy. After installation of the apparatus required for field tests, geothermal conductivity values were obtained from three different cases (second, third, and fourth). The k values of the second case (506 m depth) and third case (151 m depth) are approximately 2.9 and 2.8, respectively. The k value of the fourth case (506 m depth, double pipe) is 2.5, which is similar to the second and third cases. This result indicates that hole depth is a critical factor for geothermal applications. Analysis of the field data (k, water velocity, water quantity, and pipe pressure) reveals that a single geothermal system at 506 m depth is more economically efficient than three geothermal systems at depths intervals of 151 m. Although it is more expensive to install a geothermal system at 506 m depth than at 151 m depth, test results showed that the geothermal system of the fourth case (506 m, double pipe) is more economically efficient than the system at 151 m depth. Considering the optional cost of maintenance, which is a non-operational expense, the geothermal system of the fourth case is economically efficient. Large cities and areas with high land prices should make greater use of geothermal energy.