• 제목/요약/키워드: High doping

검색결과 817건 처리시간 0.025초

Two-Bit/Cell NFGM Devices for High-Density NOR Flash Memory

  • Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권1호
    • /
    • pp.11-20
    • /
    • 2008
  • The structure of 2-bit/cell flash memory device was characterized for sub-50 nm non-volatile memory (NVM) technology. The memory cell has spacer-type storage nodes on both sidewalls in a recessed channel region, and is erased (or programmed) by using band-to-band tunneling hot-hole injection (or channel hot-electron injection). It was shown that counter channel doping near the bottom of the recessed channel is very important and can improve the $V_{th}$ margin for 2-bit/cell operation by ${\sim}2.5$ times. By controlling doping profiles of the channel doping and the counter channel doping in the recessed channel region, we could obtain the $V_{th}$ margin more than ${\sim}1.5V$. For a bit-programmed cell, reasonable bit-erasing characteristics were shown with the bias and stress pulse time condition for 2-bit/cell operation. The length effect of the spacer-type storage node is also characterized. Device which has the charge storage length of 40 nm shown better ${\Delta}V_{th}$ and $V_{th}$ margin for 2-bit/cell than those of the device with the length of 84 nm at a fixed recess depth of 100 nm. It was shown that peak of trapped charge density was observed near ${\sim}10nm$ below the source/drain junction.

Oxygen Deficiency, Hydrogen Doping, and Stress Effects on Metal-Insulator Transition in Single-Crystalline Vanadium Dioxide Nanobeams

  • 홍웅기;장성진;박종배;배태성
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.424.1-424.1
    • /
    • 2014
  • Vanadium dioxide (VO2) is a strongly correlated oxide exhibiting a first-order metal-insulator transition (MIT) that is accompanied by a structural phase transition from a low temperature monoclinic phase to a high-temperature rutile phase. VO2 has attracted significant attention because of a variety of possible applications based on its ultrafast MIT. Interestingly, the transition nature of VO2 is significantly affected by stress due to doping and/or interaction with a substrate and/or surface tension as well as defects. Accordingly, there have been considerable efforts to understand the influences of such factors on the phase transition and the fundamental mechanisms behind the MIT behavior. Here, we present the influences of oxygen deficiency, hydrogen doping, and substrate-induced stress on MIT phenomena in single-crystalline VO2 nanobeams. Specifically, the work function and the electrical resistance of the VO2 nanobeams change with the compositional variation due to the oxygen-deficiency-related defects. In addition, the VO2 nanobeams during exposure to hydrogen gas exhibit the reduction of transition temperature and the complex phase inhomogenieties arising from both substrate-induced stress and the formation of the hydrogen doping-induced metallic rutile phase.

  • PDF

Pyrosol 법에 의한 ZnO 투명전도막의 Al Doping 및 열처리 효과 (Al Doping and Post Annealing Effects of Pyrosol Deposited ZnO Thin Films)

  • 송진수;유권종;이창현;조우영;임광수;엄창영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1301-1304
    • /
    • 1994
  • ZnO transparent conducting oxide thin films have been prepared by Pyrosol deposition method. The effect of the Al doping with varying Al/Zn mole ratio and the post-deposition heat treatment on the electrical resistivity and optical transmittance of the prepared films have been investigated. From the experimental results, the ZnO:Al thin films with resistivity as low as $3{\times}10^{-3}{\Omega}cm$ and transmittance as high as 80% can be obtained by Al doping. Also We have found the annealing of the as-deposited ZnO film in vacuum leads to a substantial reduction in resistivity without affecting the optical transmittance and crystallographic orientation. However, the annealing effect of ZnO:Al thin films is smaller than ZnO films with respect to reduction in resistivity.

  • PDF

Metabolism and Pharmacokinetics of S-(N,N-Diethyldithiocar-bamoyul)-N-acetyl-L-cysteine in Rats

  • Lee, Byung-Hoon;Song, Yun-Seon;Park, Jongsei;Ryu, Jae-Chun
    • Archives of Pharmacal Research
    • /
    • 제17권6호
    • /
    • pp.428-433
    • /
    • 1994
  • The methabolism and phamacokinetics of a mixed disulfide S-(N, N-diethyldithiocarbamoyl)-N-acetyl-L-cysteine (AC-DDTC) were studied in rats. Two metabolites of AC-DDTC following iv and po administration were indentified in plasma and liver by HPLC and GC, namely N, N-diethyldithiocarbamate (DDTC) and the methyl ester of DDTC (Me-DDTC). AC-DDTC was very unstable in vivo and could not be detected neither in plasma nor in urine. Pharmacokinetic parameters of DDTC following intravenous administration of AC-DDTC (20 mg/kg) were calculated. DDTC has a low affinity to rat tissue and the body clearance was $9.0{\pm}3.4mkl/mim/kg$. The mean residence time (MRT) was $11.5{\pm}16.3 min$. After oral administration of 20 mg/kg AC-DDTC, maximal plasma concenttion ($C_{max}$) was $3.8{\pm}0.2 nmol/ml$ and the bioavailability was 7.04%. $C_{max}$ for DDTC at a dose of 120 mg/kg. AC-DDTC was $40.1{\pm}2.2 nmol/ml$. ART was $47.1{\pm}2.8min$.at a dose of 20 mg/kg and $110.5{\pm}6.0 min$ at 120 mg/kg.

  • PDF

낮은 에너지로 실리콘에 이온 주입된 분포와 열처리된 인듐의 거동에 관한 시뮬레이션과 모델링 (Modeling and Simulation on Ion Implanted and Annealed Indium Distribution in Silicon Using Low Energy Bombardment)

  • 정원채
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.750-758
    • /
    • 2016
  • For the channel doping of shallow junction and retrograde well formation in CMOS, indium can be implanted in silicon. The retrograde doping profiles can serve the needs of channel engineering in deep MOS devices for punch-through suppression and threshold voltage control. Indium is heavier element than B, $BF_2$ and Ga ions. It also has low coefficient of diffusion at high temperatures. Indium ions can be cause the erode of wafer surface during the implantation process due to sputtering. For the ultra shallow junction, indium ions can be implanted for p-doping in silicon. UT-MARLOWE and SRIM as Monte carlo ion-implant models have been developed for indium implantation into single crystal and amorphous silicon, respectively. An analytical tool was used to carry out for the annealing process from the extracted simulation data. For the 1D (one-dimensional) and 2D (two-dimensional) diffused profiles, the analytical model is also developed a simulation program with $C^{{+}{+}}$ code. It is very useful to simulate the indium profiles in implanted and annealed silicon autonomously. The fundamental ion-solid interactions and sputtering effects of ion implantation are discussed and explained using SRIM and T-dyn programs. The exact control of indium doping profiles can be suggested as a future technology for the extreme shallow junction in the fabrication process of integrated circuits.

Pt이 도핑된 박막 전지용 비정질 산화바나듐 박막의 구조적 변화 (Structure evolution of Pt doped amorphous $V_{2}O_{5}$ cathode film for thin film battery)

  • 김한기;전은정;옥영우;성태연;조원일;윤영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.889-892
    • /
    • 2000
  • We have investigated the Pt doping effect on structural and electrochemical properties of amorphous vanadium oxide film, grown by radio frequency magnetron sputtering. Room temperature charge-discharge measurements based on a half-cell with a constant current clearly indicated that the Pt doping could improve the cyclibility of V$_2$O$_{5}$ cathode film. Using glancing angle x-ray diffraction (GXRD) and high resolution transmission electron microscopy (HRTEM) analysis, we found that the Pt doping with l0W r.f. power induce more random amorphous structure than undoped V$_2$O$_{5}$ film. As the r.f. power of Pt increases, large amount of Pt incorporates into amorphous V$_2$O$_{5}$ and makes PtOx microcrystalline phase in amorphous matrix. This result suggests that the semicondcuting PtOx microcrystalline phase in amorphous matrix lead to a drastically faded cyclibility of 50W Pt doped V$_2$O$_{5}$ cathode film. Possible explanations are given to describe the Pt doping effect on cyclibility of vanadium oxide cathode film.de film.

  • PDF

High-valence Mo doping for promoted water splitting of Ni layered double hydroxide microcrystals

  • Kyoungwon Cho;Seungwon Jeong;Je Hong Park;Si Beom Yu;Byeong Jun Kim;Jeong Ho Ryu
    • 한국결정성장학회지
    • /
    • 제33권2호
    • /
    • pp.78-82
    • /
    • 2023
  • The oxygen evolution reaction (OER) is the primary challenge in renewable energy storage technologies, specifically electrochemical water splitting for hydrogen generation. We report effects of Mo doping into Ni layered double hydroxide (Ni-LDH) microcrystal on electrocatalytic activities. In this study, Mo doped Ni-LDH were grown on three-dimensional porous nicekl foam (NF) by a facile solvothermal method. Homogeneous LDH structure on the NF was clearly observed. However, the surface microstructure of the nickel foam began to be irregular and collapsed when Mo precursor is doped. Electrocatalytic OER properties were analyzed by Linear sweep voltammetry (LSV) and Electrochemical impedance spectroscopy (EIS). The amount of Mo doping used in the electrocatalytic reaction was found to play a crucial role in improving catalytic activity. The optimum Mo amount introduced into the Ni LDH was discussed with respect to their OER performance.

박형웨이퍼를 사용한 결정질 태양전지의 PC1D를 이용한 최적화

  • 임태규;정우원;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.38-38
    • /
    • 2009
  • Wafer thickness of crystalline silicon is an important factor which decides a price of solar cell. PC1D was used to fix a condition that is required to get a high efficiency in a crystalline silicon solar cell using thin wafer($150{\mu}m$). In this simulation, base resistivity and emitter doping concentration were used as variables. As a result of the simulation, $V_{oc}$=0.6338(V), $I_{sc}$=5.565(A), $P_{max}$=2.674(W), FF=0.76 and efficiency 17.516(%) were obtained when emitter doping concentration is $5{\times}10^{20}cm^{-3}$, depth factor is 0.04 and sheet resistance is $79.76{\Omega}/square$.

  • PDF

Substrate Doping Concentration Dependence of Electron Mobility Enhancement in Uniaxial Strained (110)/<110> nMOSFETs

  • Sun, Wookyung;Choi, Sujin;Shin, Hyungsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.518-524
    • /
    • 2014
  • The substrate doping concentration dependence of strain-enhanced electron mobility in (110)/<110> nMOSFETs is investigated by using a self-consistent Schr$\ddot{o}$dinger-Poisson solver. The electron mobility model includes Coulomb, phonon, and surface roughness scattering. The calculated results show that, in contrast to (100)/<110> case, the longitudinal tensile strain-induced electron mobility enhancement on the (110)/<110> can be increased at high substrate doping concentration.

Improving the dielectric reliability using boron doping on solution-processed aluminum oxide

  • Kim, Hyunwoo;Lee, Nayoung;Choi, Byoungdeog
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.411.1-411.1
    • /
    • 2016
  • In this study, we examined the effects of boron doping on the dielectric reliability of solution processed aluminum oxide ($Al_2O_3$). When boron is doped in aluminum oxide, the hysteresis reliability is improved from 0.5 to 0.4 V in comparison with the undoped aluminum oxide. And the accumulation capacitance is increased when boron was doped, which implying the reduction of the thickness of dielectric film. The improved dielectric reliability of boron-doped aluminum oxide is originated from the small ionic radius of boron ion and the stronger bonding strength between boron and oxygen ions than that of between aluminum and oxygen ions. Strong boron-oxygen ion bonding in aluminum oxide results dielectric film denser and thinner. The leakage current of aluminum oxide also reduced when boron was doped in aluminum oxide.

  • PDF