Browse > Article
http://dx.doi.org/10.5573/JSTS.2014.14.5.518

Substrate Doping Concentration Dependence of Electron Mobility Enhancement in Uniaxial Strained (110)/<110> nMOSFETs  

Sun, Wookyung (Department of Electronic Engineering, Ewha Womans University)
Choi, Sujin (Department of Electronic Engineering, Ewha Womans University)
Shin, Hyungsoon (Department of Electronic Engineering, Ewha Womans University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.14, no.5, 2014 , pp. 518-524 More about this Journal
Abstract
The substrate doping concentration dependence of strain-enhanced electron mobility in (110)/<110> nMOSFETs is investigated by using a self-consistent Schr$\ddot{o}$dinger-Poisson solver. The electron mobility model includes Coulomb, phonon, and surface roughness scattering. The calculated results show that, in contrast to (100)/<110> case, the longitudinal tensile strain-induced electron mobility enhancement on the (110)/<110> can be increased at high substrate doping concentration.
Keywords
Electron mobility; stress; strain; intravalley phonon mobility; intervalley phonon mobility; wafer orientation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. W. Liu, S. Maikap, and C. Y. Yu "Mobility-Enhancement Technologies," IEEE Circuits & Device magazine, pp. 18-23, May/Jun. 2005.
2 S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Ma, B. Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, "A logic nanotechnology featuring strained-silicon," IEEE Electron Device Lett., vol. 25, no. 4, pp. 191-193, Apr. 2004.   DOI
3 N. Mohta and S. E. Thompson "Mobility enhancement," IEEE Circuits & Device magazine, pp. 21-36, Sep./Oct. 2005.
4 Y. Song, H. Zhou, Q. Xu, J. Luo, H. Yin, J. Yan, and H. Zhong "Mobility Enhancement Technology for Scaling of CMOS Devices: Overview and Status," Journal of electronic materials, vol. 40, no. 7, pp. 1584-1612, 2011.   DOI
5 M. V. Fischetti, F. Gamiz, and W. Hansch, "On the enhanced electron mobility in strained-silicon inversion layers," J. Appl. Phys., vol. 92, no. 12, pp. 7320-7324, Dec. 2002.   DOI
6 K. W. Ang, K. J. Chui, C. H. Tung, N. Balasubramanian, M. Fu. Li, G. S. Samudra, and Y. C. Yeo, "Enhanced strain effects in 25-nm gatelength thin-body nMOSFETs with silicon-carbon source/drain and tensile-stress liner," IEEE Electron Device Lett., vol. 28, no. 4, pp. 301-304, Apr. 2007.   DOI
7 K. Uchida, M. Saitoh, and S. Kobayashi, "Carrier transport and stress engineering in advanced nanoscale transistors from (100) and (110) transistors to carbon nanotube FETs and beyond," in IEDM Tech. Dig., 2008, pp. 1-4.
8 W. Sun and H. Shin, "Substrate doping concentration dependence of electron mobility using the effective deformation potential in uniaxial strained nMOSFETs," in TENCON, 2013, pp. 166-167.
9 W. Sun and H. Shin, "Optimization of uniaxial stress for high electron mobility on biaxiallystrained n-MOSFETs," Solid-State Electronics, vol. 94, pp.23-27, Apr. 2014.   DOI
10 D. Esseni and F. Driussi, " A Quantitative error analysis of the mobility extraction according to the matthiessen rule in advanced MOS transistors," IEEE Trans. on Elec. Dev., vol. 58, no. 8, pp. 2415-2422, 2011.   DOI
11 S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, "Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor fieldeffect transistors," J. Appl. Phys., vol. 80, no. 3, pp. 1567-1577, Aug. 1996   DOI   ScienceOn
12 M. Lundstrom, Fundamentals of carrier transport, second ed., Cambridge, New York, 2000, pp.70.
13 T. Ando, A. B. Fowler, and F. Stern, "Electronic properties of two-dimensional systems," Rev. Mod. Phys., vol 54 (1982) pp. 437-672, 1982.   DOI
14 K. Masaki, C. Hamaguchi, K. Taniguchi, and M. Iwase, "Electron mobility in Si inversion layers," Japan. J. Appl. Phys., vol. 28, no. 10, pp. 1856-1863, Oct. 1989.   DOI
15 N. Serra, and D. Esseni, "Mobility enhancement in strained n-FinFETs: Basic insight and stress engineering," IEEE Trans. Electron Devices, vol. 57, no. 2, pp. 482-490, Feb. 2010.   DOI
16 E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina, and S. Selberherr, "The effect of general strain on the band structure and electron mobility of silicon," IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2183-2190, Sep. 2007.   DOI
17 S. Takagi, A. Toriumi, M. Iwase, and H. Tango, "On the universality of inversionlayer mobility in Si MOSFET's: Part II-Effects of surface orientation," IEEE Trans. Electron Devices, vol. 41, no. 12, pp. 2363-2368, Dec. 1994.   DOI   ScienceOn
18 K. Uchida, A. Kinoshita, and M. Saitoh, "Carrier transport in (110) nMOSFETs : Subband structures, non-parabolicity, mobility characteristics, and uniaxial stress engineering," in IEDM Tech. Dig., 2006, pp. 1-4.
19 S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, "Carrier-transport-enhanced channel CMOS for improved power consumption and performance," IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 21-39, Jan. 2008.   DOI
20 J. Wang, A. Rahman, A. Ghosh, G. Klimeck, and M. Lundstrom, "On the validity of the parabolic effective-mass approximation for the I-V calculation of silicon nanowire transistors," IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1589-1594, Jul. 2005.   DOI