DOI QR코드

DOI QR Code

Substrate Doping Concentration Dependence of Electron Mobility Enhancement in Uniaxial Strained (110)/<110> nMOSFETs

  • Sun, Wookyung (Department of Electronic Engineering, Ewha Womans University) ;
  • Choi, Sujin (Department of Electronic Engineering, Ewha Womans University) ;
  • Shin, Hyungsoon (Department of Electronic Engineering, Ewha Womans University)
  • Received : 2014.05.01
  • Accepted : 2014.07.27
  • Published : 2014.10.30

Abstract

The substrate doping concentration dependence of strain-enhanced electron mobility in (110)/<110> nMOSFETs is investigated by using a self-consistent Schr$\ddot{o}$dinger-Poisson solver. The electron mobility model includes Coulomb, phonon, and surface roughness scattering. The calculated results show that, in contrast to (100)/<110> case, the longitudinal tensile strain-induced electron mobility enhancement on the (110)/<110> can be increased at high substrate doping concentration.

Keywords

References

  1. C. W. Liu, S. Maikap, and C. Y. Yu "Mobility-Enhancement Technologies," IEEE Circuits & Device magazine, pp. 18-23, May/Jun. 2005.
  2. N. Mohta and S. E. Thompson "Mobility enhancement," IEEE Circuits & Device magazine, pp. 21-36, Sep./Oct. 2005.
  3. Y. Song, H. Zhou, Q. Xu, J. Luo, H. Yin, J. Yan, and H. Zhong "Mobility Enhancement Technology for Scaling of CMOS Devices: Overview and Status," Journal of electronic materials, vol. 40, no. 7, pp. 1584-1612, 2011. https://doi.org/10.1007/s11664-011-1623-z
  4. M. V. Fischetti, F. Gamiz, and W. Hansch, "On the enhanced electron mobility in strained-silicon inversion layers," J. Appl. Phys., vol. 92, no. 12, pp. 7320-7324, Dec. 2002. https://doi.org/10.1063/1.1521796
  5. S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Ma, B. Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, "A logic nanotechnology featuring strained-silicon," IEEE Electron Device Lett., vol. 25, no. 4, pp. 191-193, Apr. 2004. https://doi.org/10.1109/LED.2004.825195
  6. K. W. Ang, K. J. Chui, C. H. Tung, N. Balasubramanian, M. Fu. Li, G. S. Samudra, and Y. C. Yeo, "Enhanced strain effects in 25-nm gatelength thin-body nMOSFETs with silicon-carbon source/drain and tensile-stress liner," IEEE Electron Device Lett., vol. 28, no. 4, pp. 301-304, Apr. 2007. https://doi.org/10.1109/LED.2007.893221
  7. K. Uchida, M. Saitoh, and S. Kobayashi, "Carrier transport and stress engineering in advanced nanoscale transistors from (100) and (110) transistors to carbon nanotube FETs and beyond," in IEDM Tech. Dig., 2008, pp. 1-4.
  8. S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, "Carrier-transport-enhanced channel CMOS for improved power consumption and performance," IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 21-39, Jan. 2008. https://doi.org/10.1109/TED.2007.911034
  9. W. Sun and H. Shin, "Substrate doping concentration dependence of electron mobility using the effective deformation potential in uniaxial strained nMOSFETs," in TENCON, 2013, pp. 166-167.
  10. D. Esseni and F. Driussi, " A Quantitative error analysis of the mobility extraction according to the matthiessen rule in advanced MOS transistors," IEEE Trans. on Elec. Dev., vol. 58, no. 8, pp. 2415-2422, 2011. https://doi.org/10.1109/TED.2011.2151863
  11. S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, "Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor fieldeffect transistors," J. Appl. Phys., vol. 80, no. 3, pp. 1567-1577, Aug. 1996 https://doi.org/10.1063/1.362953
  12. M. Lundstrom, Fundamentals of carrier transport, second ed., Cambridge, New York, 2000, pp.70.
  13. W. Sun and H. Shin, "Optimization of uniaxial stress for high electron mobility on biaxiallystrained n-MOSFETs," Solid-State Electronics, vol. 94, pp.23-27, Apr. 2014. https://doi.org/10.1016/j.sse.2014.01.005
  14. T. Ando, A. B. Fowler, and F. Stern, "Electronic properties of two-dimensional systems," Rev. Mod. Phys., vol 54 (1982) pp. 437-672, 1982. https://doi.org/10.1103/RevModPhys.54.437
  15. K. Masaki, C. Hamaguchi, K. Taniguchi, and M. Iwase, "Electron mobility in Si inversion layers," Japan. J. Appl. Phys., vol. 28, no. 10, pp. 1856-1863, Oct. 1989. https://doi.org/10.1143/JJAP.28.1856
  16. N. Serra, and D. Esseni, "Mobility enhancement in strained n-FinFETs: Basic insight and stress engineering," IEEE Trans. Electron Devices, vol. 57, no. 2, pp. 482-490, Feb. 2010. https://doi.org/10.1109/TED.2009.2037369
  17. E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina, and S. Selberherr, "The effect of general strain on the band structure and electron mobility of silicon," IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2183-2190, Sep. 2007. https://doi.org/10.1109/TED.2007.902880
  18. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, "On the universality of inversionlayer mobility in Si MOSFET's: Part II-Effects of surface orientation," IEEE Trans. Electron Devices, vol. 41, no. 12, pp. 2363-2368, Dec. 1994. https://doi.org/10.1109/16.337450
  19. K. Uchida, A. Kinoshita, and M. Saitoh, "Carrier transport in (110) nMOSFETs : Subband structures, non-parabolicity, mobility characteristics, and uniaxial stress engineering," in IEDM Tech. Dig., 2006, pp. 1-4.
  20. J. Wang, A. Rahman, A. Ghosh, G. Klimeck, and M. Lundstrom, "On the validity of the parabolic effective-mass approximation for the I-V calculation of silicon nanowire transistors," IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1589-1594, Jul. 2005. https://doi.org/10.1109/TED.2005.850945