• Title/Summary/Keyword: High coupling ratio

Search Result 183, Processing Time 0.025 seconds

Development of a Test Facility for Cold-air Performance of Small Axial Turbine (소형 축류터빈의 상온 성능시험기 개발)

  • 손창민;차봉준;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1780-1786
    • /
    • 1995
  • The main goal of the present study is to establish the techniques and methodolgies of turbine performance test through evaluating the objective turbine test piece, and checking the reliability of the self-developed test facility by performing a series of turbine tests under ambient temperature condition. A high speed coupling, a lubrication system and a test bed of the test facility were modified through a series of preliminary test in order to reduce the vibration and oil leakage. The flowrate control of the test facility and data acquisition were accomplished by using a software called "Labview" The measurement of shaft horse power and control of rotational speed according to the conditions of turbine rotation were performed by a separate system. The preliminary evaluation of the measured data suggests that the developed test facility and the test technique can be used reliably for the performance test of turbines with the minor improvement.provement.

Design of Optical Multimode Interference Couplers with Ultracompact Propagating Width (초소형 전송폭을 갖는 광 다중모드 간섭결합기의 설계)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • In this paper, to evaluate the design properties of 3D optical multimode interference (MMI) couplers with ultracompact width, modal transmission line theory and effective dielectric method are combined with together. A coupling efficiency based on the composed approach is defined, and the coupling length is numerically determined for the design of 3 dB coupler, cross coupler and bar coupler. The simulation result shows that the designed MMI coupler has a low insertion loss and a high splitting ratio.

Analysis on Simulation and Experiment for Fault Current Limiting Characteristics of SFCL using Magnetic Coupling of Two Coils with Series Connection (직렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 사고전류제한 특성 시뮬레이션 및 실험 분석)

  • Kim, Jae-Chul;Lim, Sung-Hun;Kim, Jin-Seok;An, Jae-Min;Moon, Jong-Fil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.26-30
    • /
    • 2008
  • The simulation and experiment for the fault current limiting characteristics of the superconducting fault current limiter (SFCL) using the magnetic coupling of series connected two coils were performed. The magnetic fluxes generated from two coils were canceled out during a normal time. However, the resistance generation of high-Tc superconducting (HTSC) element after a fault occurrence allows the magnetic fluxes of two coils and contributes to the fault current limiting operation. Through the computer simulation and the current limiting experiment for this SFCL, the operational current and the limiting impedance of the SFCL could be confirmed to be improved by adjusting the inductance ratio of two coils.

The Role of Quantitative Electroencephalogram in the Diagnosis and Subgrouping of Attention-Deficit/Hyperactivity Disorder

  • Bong, Su Hyun;Kim, Jun Won
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.32 no.3
    • /
    • pp.85-92
    • /
    • 2021
  • Attention-deficit/hyperactivity disorder (ADHD) leads to functional decline in academic performance, interpersonal relationships, and development in school-aged children. Early diagnosis and appropriate intervention can significantly reduce the functional decline caused by ADHD. Currently, there is no established biological marker for ADHD. Some studies have suggested that various indicators from the quantitative electroencephalogram (QEEG) may be useful biological markers for the diagnosis of ADHD. Until the 2010s, theta/beta ratio (TBR) was a biomarker candidate for ADHD that consistently showed high diagnostic value. However, limitations of TBR have recently been reported. Studies have demonstrated that phase-amplitude coupling, especially theta phase-gamma amplitude coupling, are related to cognitive dysfunction and may assist in the diagnosis of ADHD. As yet, the underlying mechanism is not clearly established, and the clinical efficacy of these biomarkers needs to be proven through well-controlled studies. Based on the heterogeneous characteristics of ADHD, subgrouping through QEEG plays a key role in diagnosis and treatment planning. Sophisticated, well-designed studies and meta-analyses are necessary to confirm these findings.

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

A Resonant Circuit Design of the Inverter for Induction Heating by Analysis of the Coupling Coefficient (결합계수 해석에 의한 유도가열용 인버터의 공진회로 설계법)

  • 이광직;김주홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.90-95
    • /
    • 1997
  • In designing a resonant circuit of the inverter which puts induction heating with high frequency to the load, an inductance L of the circuit, the coupling coefficient of a transformer transfering the output power to load, and the coupling coefficient of load circuit heating with coil affect to the output power of a resonant circuit, the circuit Q and the frequency. Those characteristics of the circuit are analyzed through Thevenan's equivalent circuit of the coupling coefficient type which is derived from the T-type equivalent circuit of a transformer. On this equivalent circuit, the impedance of a transformer referred to its primary side is not only proportional the square of turn ratio, nZ, but also the square of coupling coefficient, K2 This paper proposed a more accurate fundamental method to design a resonant circuit of the inverter by using the Thevenan's equivalent circuit.

  • PDF

Polarization splitting characteristics of the side-polished fiber coupler with a thin metal interlayer (금속층이 포함된 측면 연마 광섬유 결합기의 편광 분리 특성)

  • 김광택;황보승
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.228-234
    • /
    • 2002
  • We report theoretical investigation on the polarization selective coupling characteristics of a side-polished fiber directional coupler with a thin metal interlayer. Based on normal mode theory the coupling properties of the device under various structural conditions are analyzed. It is shown that the coupling strength between TE modes weakens rapidly with increase or metal interlayer thickness, whereas that between TM modes becomes stronger. The design conditions of the polarization splitter using the coupler to achieve high extinction ratio and low insertion loss are presented.

High Exchange Coupling Field and Thermal Stability of Antiferromagnetic Alloy NiMn Spin Valve Films

  • Lee, N. I.;J. H. Yi;Lee, G. Y.;Kim, M. Y.;J. R. Rhee;Lee, S. S.;D. G. Hwang;Park, C. M.
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.50-54
    • /
    • 2000
  • NiMn-pinned spin valve films consisting of a layered glass/NiFe/Co/Cu/Co/NiFe/NiMn/Ta stack were made by do magnetron sputtering. After deposition, the structure was annealed in a series of cycles each including three hours at $220^\circ C, 2\times10^{-6}$ Torr, in a field of 350 Oe, to create an ordered antiferromagnetic structure in the NiMn layer and produce a strong unidirectional pinning field in the pinned magnetic layer, Optimum spin valve properties were obtained after seven annealing cycles, or 21 hours at $220^\circ C$, and were : MR ratio 1%, exchange coupling field 620 Oe, and coercivity of pinned layer 250 Oe. The exchange coupling field remained constant up to an operating temperature of $175^\circ C$, and the blocking temperature was about $380^\circ C$.

  • PDF

Synthesis of Graphene Oxide Based CuOx Nanocomposites and Application for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.176.1-176.1
    • /
    • 2014
  • Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.

  • PDF

High Frequency Oscillations and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소실험에서의 고주파수 진동과 저주파수 연소불안정)

  • Chae, Heesang;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1021-1027
    • /
    • 2018
  • Experimental studies have been conducted to verify that the positive coupling between pressure oscillation (p') and combustion oscillation (q') of high frequency range is a prerequisite for the initiation of low frequency instability in hybrid rocket combustion. The post-chamber length and combustion equivalence ratio were selected as critical parameters to control the phase difference between p' and q', and p' amplitude in relation to the suppression of LFI. In the results, even if the post-chamber length increases, the phase difference between p' and q' maintains below pi/2, which is a necessary condition for the LFI development, but the amplification of RI (Rayleigh index) was substantially decreased leading to a stable combustion. In addition, results confirmed that combustion stability is achieved by changing the momentary equivalence ratio and/or by suppressing the positive coupling status of p' and q'. Thus, the periodic amplification of RI was identified as the middle path of the mechanism of occurrence of LFI.