• Title/Summary/Keyword: High and low heating test

Search Result 106, Processing Time 0.031 seconds

User's Voluntary Heating Behavior for the Programming of the Efficient Heating Mode of Smart Base Layer Clothing (스마트 베이스 레이어 의복의 효과적인 발열모드 설정을 위한 사용자의 자율적 가열행동 연구)

  • Lee, Heeran;Hong, Kyunghi;Lee, Yejin;Kim, Soyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.5
    • /
    • pp.872-882
    • /
    • 2017
  • There are no specific guidelines on how to control the heat input for the heat generating smart base layer. This study investigated the mode of actuating heat pad attached to the base layer by performing a human wear test in a cold environment. Subjects participating in the test wore T-shirts, jumper and pants on the base layer with heating pads. Skin temperature, total time of heating and the number of switching for the heating mode were observed as the subject controlled the heating mode voluntarily. The comfortable range of skin temperature on the abdomen was larger than on the lower back. The subject felt hot and turned off the switch when the mean skin temperature of the abdomen was $48.8^{\circ}C$ and the lower back was $40.1^{\circ}C$. The total heating time and the number of actuating switching were larger for women than men. The voluntary action of heating for men with high cold sensitivity was significantly different from men with low cold sensitivity. Therefore, it is necessary (depending on gender and cold sensitivity) to set the heating mode differently for the automatic heat control of a future smart base layer.

Cracking Behavior of Cement and Concrete Damaged by High Temperature of 800℃ (800℃ 조건에서의 시멘트 경화체의 균열 특성)

  • Ji, Woo-Ram;Park, Ji Woong;Shin, Ki Don;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.26-27
    • /
    • 2017
  • In this study, the cracking characteristics of cured pastes at 800℃ were investigated by X-ray CT. The test specimens were fabricated with and without aggregate, and the heating rate condition was applied at rapid heating (10.0℃/min). It is considered that the rapid heating condition does not cause a temperature gradient phenomenon because the temperature difference between the surface and the center of the sample is small due to a low heating rate unlike an actual fire. The cracking condition of the specimens without aggregate was more severe than that of specimens with aggregate.

  • PDF

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region (저온영역에서 단열용기를 이용한 연료전지 모의 실험)

  • Jo, In-Su;Kwon, Oh-Jung;Kim, Yu;Hyun, Deok-Su;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.

The mutagenicity of extracts from grilled pork belly and the effect of garlic on it (구운 돼지고기 추출물의 돌연변이 유발능과 이에 미치는 마늘의 영향)

  • 이철원;홍기형;김영배
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.1
    • /
    • pp.63-82
    • /
    • 1991
  • This study was carried out to examine the mutagenicity of extracts from grilled pork belly and the effect of garlic on it by using Arnes test. And in order to imitate the in vivo metabolic activation system of the mutagens, the enzymatic activation system was adopted. The results are summarlized as follows: 1. The degree of browning in pork belly extracts increased with the increasing heating intensity of the grilling. 2. When pork belly grilled at "low" heating intensity, no mutagenicity was detected. However with the samples grilled at "medium" and "high" heating intersity, mutagenicity was recognized. 3. The mutagenicity of grilled pork belly extract decreased remarkabley with the addition of S-9 mix. 4. The mutagenicity of grilled pork belly extract decreased with the addition of garlic extract.

  • PDF

A Study on Thermal Characteristics of Carbon-Organic Surface Heating Element with Electrodeless Lamp of a Freezer (냉동고 무전극램프 적용 탄소-유기소재 면상발열체의 열 특성에 관한 연구)

  • Lee, Min-Sang;Back, Seong-Hun;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This study deals with the fabrication and thermal characterization of planar heating elements attached to the backside of the reflector used in the electrodeless lamp of a freezer. We tried to solve the problem of the local heat generation of the linear heating element that occurs about 50℃. The homogeneous dispersion and manufacturing excellence of the planar heating element produced were confirmed through SEM and EDS. In addition, the test specimens was prepared according to the change in the ratio of carbon fiber to the basis weight of the planar heating element, and a sample having a basis weight of 50g/㎡ having a content ratio of carbon fiber of 70% was selected. That sample showed low surface resistance of 4.3Ω/sq and high temperature of about 81℃ at 6V. Durability was confirmed by performing repeated bending evaluation of 3000 cycles for the sample. Large area test specimens were prepared to be applied to the actual reflector, insulated by EVA film and analyzed for their thermal characteristics. From 13V application, the temperature of the linear heating element was higher than 50℃ and the average temperature of 68℃ was maximum at 18V.

The Development and Performance Test of a Small Wood Boiler (소형 화목보일러의 개발 및 성능시험)

  • Kim, Sa-Ryang;Lee, Jong-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.491-497
    • /
    • 2002
  • In the present study, a new wood boiler was developed through the performance test. The efficiency of the boiler was obtained up to about 63.7%, which is 67% higher than that of conventional wood boiler, about 38.2%. The structure of the new boiler is more complicated than the conventional boiler. The passage of combustion gas is sufficiently long to exchange heat well with heating water. Therefore, the obtained efficiency is so high, and the temperature of exhaust gas was lower than 200$^{\circ}C$, which is as low as that of light oil boiler. The composition of exhaust gas was measured, and the CO gas concentration was obtained more than 3000 ppm. So, it seems that more study is needed to lower the concentration of CO gas.

A Study on the Styrofoaming Method by UHF Heating (초고주파 가열을 이용한 스티로폼 제조기술 연구)

  • Han Doo Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.94-103
    • /
    • 2005
  • The low foamed high strengthen styrofoam samples made by dielectric heating are discussed. We used the oscillator which have the frequency of 13.6 MHz and the power of 7 kW. 3 times expanded beads by steaming method were used in our foam-molding test. Internal fusion properties and density of internal structure were improved by dielectric foaming process. At the temperature of $105-110^{\circ}C$, the internal fusion property was maximally improved.

  • PDF

The Effect of the Heating Conditions on the Warm Hydro-Formability of the Alumium Alloys (알루미늄합금의 열간 액압성형법 성형성에 대한 가열조건의 영향도 분석)

  • Kim, Bong-Joon;Park, Kwang-Su;Ryu, Jong-Soo;Son, Sung-Man;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.172-176
    • /
    • 2005
  • Modern automobiles are built with a steadily increasing variety of materials and semifinished products. The traditional composition of steel sheet and cast iron is being replaced with other materials such as aluminum and magnesium. But low formability of these materials has prevented the application of the automotive components. The formability can be enhanced by conducting the warm hydroforming using induction heating device which can raise the temperature of the specimen very quickly. The specimen applied to the test is A6061, A7075 extruded tubes which belong to the age-hardenable aluminum alloys. But in the case of A6061 age hardening occurs at room temperature or at elevated temperatures before and after the forming process. In this study the effects of the heating condition such as heating time, preset temperature, holding time during die closing and forming time on the hydroformability are analyzed to evaluate the phenomena such as dynamic strain hardening and ageing hardening at high temperatures after the hydroforming process.

A Study on the Development of High Torque Composite Propeller Shaft (고토크 복합재 프로펠러 샤프트 개발에 관한 연구)

  • 박지상;황경정;김태욱;윤형석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.22-26
    • /
    • 2002
  • The goal of this study is to replace the current forward 2-piece propeller shaft of 8 ton large truck made of steel with 1-piece composite propeller shaft. A low cost Glass/Epoxy composite propeller shafts were successfully developed, which satisfy requirements such as the capacity of static torque transfer, fatigue strength and bending natural frequency. Devising secure joining method of a composite tube and metal yoke was the most critical issue in successful development of a high torque composite propeller shaft. In this study, joining method using thermal interference fit was adopted for composite to metal joint. Optimum conditions of heating temperature and interference level of thermal interference fit were determined from thermal stress analysis using 3D finite element method. Static torsion test, fatigue test, RPM and balance test were performed to verify the design.

  • PDF