• Title/Summary/Keyword: High Voltage Pulse

Search Result 956, Processing Time 0.031 seconds

A New High-Voltage Generator for the Semiconductor Chip

  • Kim Phil Jung;Ku Dae Sung;Chat Sin Young;Jeong Lae Seong;Yang Dong Hyun;Kim Jong Bin
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.612-615
    • /
    • 2004
  • A high-voltage generator is used to program the anti-fuse of the semiconductor chip. A new high-voltage generator consists of PN diodes and new stack type capacitors. An oscillator supply pulses to the high-voltage generator. The pulse period of the oscillator is delayed by controlling gate-voltage of the MOS. The pulse period is about 27ns, therefore the pulse frequency is about 37MHz. The threshold voltage of PN diode is about 0.8V. The capacitance of new stack type capacitor is about 4pF. The output voltage of the new high-voltage generator is about 7.9V and its current capacity is about $488{\mu}$A.

  • PDF

Pulse Generator Using Series-Connected Boost Converter (승압형 컨버터의 직렬 배열에 의한 펄스전압 발생회로)

  • 백주원;유동욱;김태진;류명효;조기연;김흥근
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.170-176
    • /
    • 2003
  • This paper introduces an improved pulse generator using power semiconductors and L-C circuit. The proposed circuit consists of the series connected boost converter structure. In the presented circuits, high voltage pulse is generated by series-connection of capacitors and IGBTs. The charging of capacitors and voltage balance of IGBTs are obtained automatically. To verify the proposed circuit, 1.8㎸, 40A pulse generator is manufactured and tested.

Generation of Ultrawide Band Electromagnetic Pulse from Blumlein Pulse Forming Line

  • Jin, Yun Sik;Kim, Jong Soo;Cho, Chuhyun;Roh, Young Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.677-681
    • /
    • 2014
  • A high voltage pulse generator was fabricated to radiate ultrawide band electromagnetic pulse. A coaxial type of Blumlein pulse forming line is employed to produce a pulse of high voltage (>300 kV) and short pulse duration (~5 ns). A helical strip/wire type of air-cored pulse transformer was used to charge the Blumlein pulse forming line up to more than 300 kV. A peaking switch is essential to make the pulse rise time as fast as possible. Typically, the rise time is ~500 ps. The output pulse of the generator is radiated into air through an exponentially tapered TEM horn antenna. The electric field intensity of a radiated pulse was measured as a function of the distance from the transmitting horn as well as the output voltage of the peaking switch. The peak-to-peak value of the electric field intensity at 10 m from the TEM antenna was~100 kV/m.

A Study on the Pulse Peak Voltage and Cascading Ratio of Compact Pulse Generator using Cascading Method (Cascading 방식을 적용한 펄스발생기의 펄스전압 변성 및 Cascading 비율 특성)

  • Joung, Jong-Han;Kim, Hee-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.329-333
    • /
    • 2001
  • The pulsed poser system has been widely used to many applications, such as E/P(Electrostatic Precipitator), DeNox/DeSOx power system, ozon generator, etc. A pulse energy efficiency for load depends on the rising time, peak value, pulse duration and impedance matching, etc. The pulse generator generally required for short pusle duration and high peak value was forced to consider its volume and economy. In this study, developing a compact pulse generator that applied for cascading method to be made of two pulse transformers, we compared cascading voltage with non cascading one by applying the pulse energy to load. Adopting cascading technique to pulse transformer, we found that average cascading voltage was about 60[%] of theoretical value. Maximum cascading ratio was calculated at 60 times compared with non cascading voltage.

  • PDF

Ion Migration Characteristics of a High Voltage Rotary Spark Airgap (고전압 회전 스파크 공격간의 이온 이동특성)

  • Moon Jae-Duk;Kim Tai-Hoon;Hwang Deok-hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.427-432
    • /
    • 2005
  • Ion migration characteristics of a rotary spark airgap of high voltage Pulse generator had been investigated. It was considered that the ion migration speed and the ions of the gases(atmosphere gases, $O_2,\;N_2,,\;and\;H_{2}O,\;etc$.) and the charged very fine particles(about $10\~100nm$ size) migrated through the upper stator ball and bottom stator ball of the rotary spark airgap would determined the rise and fall times of the output high voltage pulse. In this paper, a basic study on the ion migration characteristics of the rotary spark airgap between the spark stator ball and the ion-sensing electrode of the proposed high voltage pulse generator have been investigated experimentally. As a result, the three kinds of ion speeds were detected by the ion-sensing electrode installed at the position of the bottom stator ball of the ball type sparkgap high voltage pulse generator. The migration velocities, diameters, masses, charges, numbers of the ions and particles were obtained by experiments and calculations, which, however, would determine the rise and fall times of the output high voltage pulse.

High-Speed Characteristics of Plasma Display Panel using Priming Overlapping with Display Drive Method (표시기간 중첩 프라이밍 구동기술에 의한 플라즈마 디스플레이 패널의 고속구동특성)

  • Ryeom, Jeong-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2004-2009
    • /
    • 2007
  • A new high-speed drive method for the plasma display panel is proposed. In this method, the address period is inserted for the rest period of the sustain pulses and the priming pulse is applied on the entire panel at the same time overlapping with the sustain period. The ramp shaped priming pulse can be made with a simple drive circuit in this technology and the stable sustain discharge can be induced even by a narrow scan pulse in help of the space charge generated from the address discharge. From the experiments, it is ascertained that the priming pulse hardly influences the sustain discharge. Moreover, the voltage margin of the sustain discharge is almost constant though that of the address discharge broadens with narrowing the scan pulse width. And, if the time interval between the scan pulse and the sustain pulse is within $6{\mu}s$, the voltage margin of the address and the sustain discharges are unaffected though the applied position of the scan pulse is changed. High-speed driving with the address pulse of $0.7{\mu}s$ width was achieved and the address voltage margin of 20V and the sustain voltage margin of 10V were obtained.

Design Optimization of High-Voltage Pulse Transformer for High-Power Pulsed Application (고출력 펄스응용을 위한 고전압 펄스변압기 최적설계)

  • Jang, S.D.;Kang, H.S.;Park, S.J.;Han, Y.J.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1297-1300
    • /
    • 2008
  • A conventional linear accelerator system requires a flat-topped pulse with less than ${\pm}$ 0.5% ripple to meet the beam energy spread requirements and to improve pulse efficiency of RF systems. A pulse transformer is one of main determinants on the output pulse voltage shape. The pulse transformer was investigated and analyzed with the pulse response characteristics using a simplified equivalent circuit model. The damping factor ${\sigma}$ must be >0.86 to limit the overshoot to less than 0.5% during the flat-top phase. The low leakage inductance and distributed capacitance are often limiting factors to obtain a fast rise time. These parameters are largely controlled by the physical geometry and winding configuration of the transformer. A rise time can be improved by reducing the number of turns, but it produces larger pulse droop and requires a larger core size. By tradeoffs among these parameters, the high-voltage pulse transformer with a pulse width of 10 ${\mu}s$, a rise time of 0.84 ${\mu}s$, and a pulse droop of 2.9% has been designed and fabricated to drive a klystron which has an output voltage of 284 kV, 30-MW peak and 60-kW average RF output power. This paper describes design optimization of a high-voltage pulse transformer for high-power pulsed applications. The experimental results were analyzed and compared with the design. The design and optimal tuning parameter of the system was identified using the model simulation.

  • PDF

Development of Airborne High Density High Voltage Power Supply for Traveling Wave Tubes

  • Park Young-Ju
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.257-263
    • /
    • 2005
  • This paper describes the development and testing results of a high density High Voltage Power Supply (HVPS) that drives microwave Traveling Wave Tubes (TWTs) of phased array transmitters for airborne EW systems. The HVPS is designed to consist of a number of modules connected in series. Among them, especially, the high-density pulse transformer module including the resonant circuit is newly designed to make the HVPS much more reliable. In addition, this paper describes the development of high voltage solid-state modulation using fast switching devices (FETs) and also represents the test results of a modulator module.

Development of a High Voltage Pulsed Power System for Electrostatic Precipitators (500MW 화력 발전소 전기 집진기용 고압 펄스 전원 장치 개발)

  • Kim, Won-Ho;Gang, Yu-Ri;Lee, Gwang-Hak;Kim, Jong-Su;Im, Geun-Hui;Kim, Cheol-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.807-812
    • /
    • 2000
  • With the increasing demands for clean environment, development of air cleaning systems has been received increasing attention. One of the key technologies in the electrostatic precipitator (EP) is high voltage pulsed power supply, which affects the performance of the overall system. In this study, a high voltage microsecond pulse power supply for the EP is developed for 500MW coal power plants. The power supply has dc source and a pulsed one. The ratings of the dc and the pulse source are 60kV, 800mA and 70kV, 400mA, respectively. The width of pulse voltage is 140us and the max. pulse repetition frequency is 200Hz.

  • PDF

Development of 140kV, 20mA Rated High Voltage Pulsed Power System for Pilot EP (140kV, 20mA급 Pilot 집진기용 고압 펄스 전원장치 개발)

  • Kim, Won-Ho;Kang, Iou-Ri;Lee, Kwang-Hak;Kim, Jong-Soo;Rim, Geun-Hie;Kim, Chul-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.2
    • /
    • pp.73-78
    • /
    • 2001
  • With the increasing demands for clean environment, development of air cleaning systems has been received increasing attention. One of the key technologies in the electrostatic precipitator(EP) is high voltage pulsed power supply, which affects the performance of the overall system. In this study, a high voltage microsecond pulse power supply for the pilot EP is developed. The power supply has a dc source and a pulsed one. The ratings of the dc and the pulse source are 60kV and 70kV respectively. The width of pulse voltage is 140us and the maximum pulse repetition frequency is 200Hz.

  • PDF