• Title/Summary/Keyword: High Voltage Converters

Search Result 434, Processing Time 0.037 seconds

Trend of low voltage and high current Technology for DC-DC Converters (저전압대전류(低電壓大電流) DC-DC 컨버터 기술동향(技術動向))

  • Suzuki, Shotaro
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.3-11
    • /
    • 2002
  • This paper presents the trend of low voltage and high current technology for DC-DC converters. It can be said that the output voltage of the on-board power supply has been rapidly moving forward a low voltage in proportion to the minuteness of the semiconductors. As for as its speed is concerned, the change of the market situation seems to be faster than that of R&D for the low voltage and high current products put out by power supply manufacturers. Here, the present situation and the trend of non-isolated type step-down DC-DC converter and isolated type DC-DC converter called "Brick" will be taken up mainly from the fellowing point of view. -low voltage and high current keeping up with the current demand for the latest telecommunication networks and broadband. -build-up of the total solution for dispersion system power supply. In this paper, an explanation is given to mainly concerning to the newest products in the supplier's position.

  • PDF

High Boost Converter Using Voltage Multiplier (배압회로를 이용한 고승압 컨버터)

  • Baek Ju-Won;Kim Jong-Hyun;Ryoo Myung-Hyo;Yoo Dong-Wook;Kim Jong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.416-422
    • /
    • 2006
  • With the increasing demand for renewable energy, distributed power included in fuel cells have been studied and developed as a future energy source. For this system, a power conversion circuit is necessary to interface the generated power to the utility. In many cases, a high step-up dc/dc converter is needed to boost low input voltage to high voltage output. Conventional methods using cascade dc/dc converters cause extra complexity and higher cost. The conventional topologies to get high output voltage use flyback dc/dc converters. They have the leakage components that cause stress and loss of energy that results in low efficiency. This paper presents a high boost converter with a voltage multiplier and a coupled inductor. The secondary voltage of the coupled inductor is rectified using a voltage multiplier and series-connected with the boost voltage of primary voltage of the coupled inductor. Therefore, high boost voltage is obtained with low duty cycle. Theoretical analysis and experimental results verify the proposed solutions using a 300W prototype.

Analysis and Design of Function Decoupling High Voltage Gain DC/DC Converter

  • Wei, Yuqi;Luo, Quanming;Lv, Xingyu;Sun, Pengju;Du, Xiong
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.380-393
    • /
    • 2019
  • Traditional boost converters have difficulty realizing high efficiency and high voltage gain conversion due to 1) extremely large duty cycles, 2) high voltage and current stresses on devices, and 3) low conversion efficiency. Therefore, a function decoupling high voltage gain DC/DC converter composed of a DC transformer (DCX) and an auxiliary converter is proposed. The role of DCX is to realize fixed gain conversion with high efficiency, whereas the role of the auxiliary converter is to regulate the output voltage. In this study, different forms of combined high voltage gain converters are compared and analyzed, and a structure is selected for the function decoupling high voltage gain converter. Then, topologies and control strategies for the DCX and auxiliary converter are discussed. On the basis of the discussion, an optimal design method for circuit parameters is proposed, and design procedures for the DCX are described in detail. Finally, a 400 W experimental prototype based on the proposed optimal design method is built to verify the accuracy of the theoretical analysis. The measured maximum conversion efficiency at rated power is 95.56%.

Switched Capacitor Based High Gain DC-DC Converter Topology for Multiple Voltage Conversion Ratios with Reduced Output Impedance

  • Priyadarshi, Anurag;Kar, Pratik Kumar;Karanki, Srinivas Bhaskar
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.676-690
    • /
    • 2019
  • This paper presents a switched capacitor (SC) based bidirectional dc-dc converter topology for high voltage gain applications. The proposed converter is able to operate with multiple integral voltage conversion ratios based on user input. The architecture of a user-friendly, inductor-less multi-voltage-gain bidirectional dc-dc converter is proposed in this study. The inductor-less or magnetic-less design of the proposed converter makes it effective in higher temperature applications. Furthermore, the proposed converter has a reduced component count and lower voltage stress across its switches and capacitors when compared to existing SC converters. An output impedance analysis of the proposed converter is presented and compared with popular existing SC converters. The proposed converter is simulated in the OrCAD PSpice environment and the obtained results are presented. A 200 W hardware prototype of the proposed SC converter has been developed. Experimental results are presented to validate the efficacy of the proposed converter.

DSP Based Series-Parallel Connected Two Full-Bridge DC-DC Converter with Interleaving Output Current Sharing

  • Sha, Deshang;Guo, Zhiqiang;Lia, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.673-679
    • /
    • 2010
  • Input-series-output-parallel (ISOP) connected DC-DC converters enable low voltage rating switches to be used in high voltage input applications. In this paper, a DSP is adopted to generate digital phase-shifted PWM signals and to fulfill the closed-loop control function for ISOP connected two full-bridge DC-DC converters. Moreover, a stable output current sharing control strategy is proposed for the system, with which equal sharing of the input voltage and the load current can be achieved without any input voltage control loops. Based on small signal analysis with the state space average method, a loop gain design with the proposed scheme is made. Compared with the conventional IVS scheme, the proposed strategy leads to simplification of the output voltage regulator design and better static and dynamic responses. The effectiveness of the proposed control strategy is verified by the simulation and experimental results of an ISOP system made up of two full-bridge DC-DC converters.

Analysis, Design, Modeling, Simulation and Development of Single-Switch AC-DC Converters for Power Factor and Efficiency Improvement

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • This paper addresses several issues concerning the analysis, design, modeling, simulation and development of single-phase, single-switch, power factor corrected AC-DC high frequency switching converter topologies with transformer isolation. A detailed analysis and design is presented for single-switch topologies, namely forward buck, flyback, Cuk, Sepic and Zeta buck-boost converters, with high frequency isolation for discontinuous conduction modes (DCM) of operation. With an awareness of modem design trends towards improved performance, these switching converters are designed for low power rating and low output voltage, typically 20.25W with 13.5V in DCM operation. Laboratory prototypes of the proposed single-switch converters in DCM operation are developed and test results are presented to validate the proposed design and developed model of the system.

A Pulsed Mode Operating DC Power Supply Based on Modified Multilevel Converter (Modified 멀티레벨 컨버터 기반 펄스모드 동작 직류전원장치)

  • Ahn J.S.;Nho E.C.;Kim I.D.;Kim H.G.;Chun T.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.264-268
    • /
    • 2003
  • This paper describes a high voltage high power DC power supply which has the ability of pulsed mode operation. The power supply Is constructed with several series connected power converters based on modified multilevel converters. The modified multilevel converters are suitable for the protection of frequent output short-circuit. The output dc power of the proposed converter can be disconnected from the load within several hundred microseconds at the instant of short-circuit fault. The rising time of the dc load voltage is as small as several hundred microseconds, and there is no overshoot of the do voltage because the dc output capacitors keep undischarged state. Analysis, simulations, and experiments are carried out to Investigate the operation and usefulness of the proposed scheme.

  • PDF

Power Decoupling of Single-phase DC/AC inverter using Dual Half Bridge Converter (듀얼 하프브리지 컨버터를 사용하는 파워 디커플링 DC/AC 인버터)

  • Irfan, Mohammad Sameer;Ahmed, Ashraf;Park, Joung-hu
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.421-422
    • /
    • 2015
  • Nowadays, bidirectional DC-DC converters are becoming more into picture for different applications especially electric vehicles. There are many bidirectional DC-DC converters topologies; however, voltage-fed Dual Half-Bridge (DHB) topology has less number of switches as compared to other isolated bidirectional DC-DC converters. Furthermore, voltage fed DHB has galvanic isolation, high power density, reduced size, high efficiency and hence cost effective. Electrolytic capacitors always have problem regarding size and reliability in DC-AC single phase inverters. Therefore, voltage-fed DHB converter is proposed for the purpose of power decoupling to replace electrolytic capacitor by film capacitors. A new control strategy has been developed for 120Hz ripple rejection, and it was verified by simulation.

  • PDF

Highly Efficient High-Voltage MOSFET Converter with Bidirectional Power Flow Legs

  • Ryu, Hyung-Min
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.265-270
    • /
    • 2014
  • In terms of power loss, a MOSFET has two advantages over an IGBT with an antiparallel diode: purely resistive without an offset voltage in conduction and no tail current at turn-off. However, the reverse recovery characteristic of the body diode is so poor that MOSFETs have not yet been available for high-voltage power converters with bidirectional power flow legs. This paper introduces how MOSFETs can be fully applied to high-voltage power converters with bidirectional power flow legs in order to achieve high efficiency. With a bidirectional DC-DC converter with one leg as the simplest example, the basic circuit topology and operating principle are described in detail. The high efficiency and stable operation of the proposed converter are validated through experiments with a 1.5 kW prototype.

Analysis and Control of a Modular MV-to-LV Rectifier based on a Cascaded Multilevel Converter

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Khakbazan-Fard, Mahboubeh;Schanen, Jean-Luc
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.133-145
    • /
    • 2009
  • In this paper a modular high performance MV-to-LV rectifier based on a cascaded H-bridge rectifier is presented. The proposed rectifier can directly connect to the medium voltage levels and provide a low-voltage and highly-stable DC interface with the consumer applications. The input stage eliminates the necessity for heavy and bulky step-down transformers. It corrects the input power factor and maintains the voltage balance among the individual DC buses. The second stage includes the high frequency parallel-output DC/DC converters which prepares the galvanic isolation, regulates the output voltage, and attenuates the low frequency voltage ripple ($2f_{line}$) generated by the first stage. The parallel-output converters can work in interleaving mode and the active load-current sharing technique is utilized to balance the load power among them. The detailed analysis for modeling and control of the proposed structure is presented. The validity and performance of the proposed topology is verified by simulation and experimental results.