• 제목/요약/키워드: High Velocity Impact Test

검색결과 128건 처리시간 0.027초

에틸렌-프로필렌-디엔 삼원 공중합 (EPDM) 발포체의 충격음 저감 특성에 관한 연구 (A Study on Impact Sound Insulation Properties of EPDM Micro Cellular Pad)

  • 이경원;이정희;손호성
    • Elastomers and Composites
    • /
    • 제35권2호
    • /
    • pp.138-148
    • /
    • 2000
  • EPDM 발포체의 정적/동적 특성을 측정하여 재료 특성과 진동 특성과의 연관성을 알아보고 이로부터 충격음 저감재로서의 적용 가능성을 검토하였다. 정적/동적 특성은 material test system (MTS)를 사용하여 시편의 형상, 두께, 초기하중, 발포도 등에 따라 정적 탄성계수, 동적 탄성계수, 전달율의 변화를 조사하였다. 정적 탄성계수와 동적 탄성계수의 경우, 형상이 단순하고 두께가 얇을수록 큰 값을 나타냈고, 전달율과 동적 탄성계수는 상호 비례 관계에 있음을 확인할 수 있었다. 특징적으로 동적 탄성계수가 증가하면, 전달율의 특성 피크치는 같은 주파수 영역에서의 증가 혹은 고주파수 영역으로의 전이의 형태로 일어나게 되는 것을 알 수 있었다. 실험실적 모사 시험장치를 통해 충격에 따른 주파수별 진동 속도측정과 유한 요소 해석 모델을 사용하여 mode shape에 의한 충격 해석 결과를 알아보았는데, EPDM 발포체를 사용함으로써 2.5-3.5배의 진동 속도 저감이 이루어짐을 알 수 있었고, mode shape의 경우 몰타르와 콘크리트만으로 구성된 구조물에 비해 진동 충격에 대한 변위가 급감함으로써 충격음 저감재로서의 EPDM 발포체의 적용 가능성은 상당히 높은 것을 확인할 수 있었다.

  • PDF

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

RV 차량 시트의 적재물 침입 강도해석 (Strength Analysis of Luggage Intrusion into Recreational Vehicle Seat)

  • 배진우;강성종
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.160-166
    • /
    • 2005
  • In recent, recreational vehicles, which efficiently provide wide inner space for various utilities, are highly preferred in automobile market. Though those vehicles enable to load much luggage in space behind the last seat, in case of frontal impact with high velocity the luggage strongly collides into the seat back and the passengers in. the last seat could be severely injured. Therefore, high strength against luggage intrusion is required for the last seat, and it is regulated by law of ECE R17. In this study, for a recreational vehicle under developing, an analysis technique for simulating seat crash in accordance with luggage intrusion test of ECE R17 was investigated. The results exhibited good correlation with the test ones.

압축기 토출벨브의 유체-구조 연계해석 및 충돌해석 (Flow Structure Interaction 3-D Reciprocating Compressor and Impact Analyses of Compressor Discharge Valve)

  • 레사 옥타비안티;김동현;박강균;정원현;안재우;문경호;고영필;김형식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.633-640
    • /
    • 2007
  • In this paper, 3-D reciprocating compressor is taken into flow-structure interaction analysis. The full cycle process consisted of cylinder expansion and compression has been modeled without considering flow leakage through cylinder wall. Fully-coupled FSI analysis of this compressor model was iteratively solved and gives sufficient result with the experimental test. The study is emphasized to thoroughly investigate discharge valve motion, opening and closing, in order to determine discharge valve region which is prone to have high effective stress. The cylinder pressure is successfully validated before conducting impact analyses between discharge valve and other susceptible supported structure. Velocity profile has been obtained in FSI analysis is used as initial condition to carry out further impact analyses. Stress result of discharge valve and valve spring gives preliminary estimation of higher stress area due to its impact phenomena.

  • PDF

크러시스위치 조립체의 작동신뢰성 확인을 위한 M&S와 시험 결과 비교 (M&S and Experimental Comparison of Crush Switch Assembly for Operation Validation)

  • 김민겸;정명숙;엄원영;장준용
    • 한국군사과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.229-236
    • /
    • 2020
  • A crush switch assembly(CSA) connected to an impact fuze provides electrical signal for detonation of the loaded main charge when an impact with the target is detected. Because the CSA experiences continuous changes in flight environment such as changes in velocity, vibration, and stresses, it is necessary to accurately predict the behavior of the fuze to maintain functionality during flight and to detonate when necessary. In this paper, random vibration analysis for flight environment and impact analysis on target hit are performed using FEA. Then, high speed impact tests are performed with the original and scaled down models to ensure operation validation of the manufactured products. The test results are then compared with M&S results to verify the capability of currently modeled CSA.

고속 비상체 충격에 의한 시멘트 복합체의 파괴거동 평가 (Evaluation of Fracture Behaviours of Cementitious Composites by High-velocity Projectile Impact)

  • 민지영;조현우;이장화;김성욱;문재흠
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권6호
    • /
    • pp.55-62
    • /
    • 2015
  • 공공시설물의 대형화 및 도심지로의 인구 밀집화에 따라 충돌 또는 폭발과 같은 하중조건 하에서의 구조물 방호성능의 중요성이 대두되고 있다. 그러나 구조물의 방호설계 및 시공에 있어서 필수적이라 할 수 있는 구조 재료 또는 자재에 대한 방호성능 평가기준은 현재 정립되어 있지 않은 실정이다. 따라서 본 연구에서는 구조용 자재의 내충격 성능평가 기준 개발 연구의 일환으로 가스건을 사용한 발사체 충격 파괴시험을 콘크리트 시험체에서 수행함과 동시에, 다양한 접촉식 계측 센서의 적용 가능성을 확인하고자 하였다. 또한, 충격 파괴시험을 통해 일반 콘크리트 및 강섬유가 보강된 초고성능콘크리트의 파괴모드 및 방호성능에 대한 평가를 수행하였다. 실험 수행 결과, 접촉식 계측센서 중 LVDT 변위계의 적용 가능성을 확인하였으며, UHPC의 경우 혼입된 보강섬유의 효과로 인해 일반 콘크리트에 비해 우수한 방호성능을 보여주었다.

Design criteria for birdstrike damage on windshield

  • Marulo, Francesco;Guida, Michele
    • Advances in aircraft and spacecraft science
    • /
    • 제1권2호
    • /
    • pp.233-251
    • /
    • 2014
  • Each aircraft have to be certified for a specified level of impact energy, for assuring the capability of a safe flight and landing after the impact against a bird at cruise speed. The aim of this research work was to define a scientific and methodological approach to the study of the birdstrike phenomenon against several windshield geometries. A series of numerical simulations have been performed using the explicit finite element solver code LS-Dyna, in order to estimate the windshield-surround structure capability to absorb the bird impact energy, safely and efficiently, according to EASA Certification Specifications 25.631 (2011). The research considers the results obtained about a parametric numerical analysis of a simplified, but realistic, square flat windshield model, as reported in the last work (Grimaldi et al. 2013), where this model was subjected to the impact of a 1.8 kg bird model at 155 m/s to estimate the sensitivity of the target geometry, the impact angle, and the plate curvature on the impact response of the windshield structure. Then on the basis of these results in this paper the topic is focused about the development of a numerical simulation on a complete aircraft windshield-surround model with an innovative configuration. Both simulations have used a FE-SPH coupled approach for the fluid-structure interaction. The main achievement of this research has been the collection of analysis and results obtained on both simplified realistic and complete model analysis, addressed to approach with gained confidence the birdstrike problem. Guidelines for setting up a certification test, together with a design proposal for a test article are an important result of such simulations.

Axial Impact Collapse Analysis of Spot Welded Hat Shaped Section Members

  • Yang, In-Young;Cha, Cheon-Seok;Kang, Jong-Yup
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.180-191
    • /
    • 2001
  • The widely used spot welded sections of automobiles(hat and double hat shaped section members) absorb most of the energy in a front-end collision. The sections were tested with respect to axial static(10mm/min) and quasi-static(1000mm/min) loads. Based on these test results, specimens with various thicknesses, width ratios and spot weld pitches on the flange were tested at high impact velocity(7.19m/sec and 7.94m/sec) which simulates an actual car crash. Characteristics of collapse have been reviewed and structures for optimal energy absorbing capacity is suggested.

  • PDF

컴퓨터 시뮬레이션 기법을 이용한 고속전철 승객안전도 해석 및 평가 (A Study of KHST Passenger Safety During Accidents by Computer Simulation Techniques)

  • 윤영한;구정서;이재완
    • 한국철도학회논문집
    • /
    • 제6권1호
    • /
    • pp.15-20
    • /
    • 2003
  • The computer simulation techniques were adopted to evaluate the effects of seating positions of passenger under various accident scenarios. The baseline of computer simulation model was tuned by the sled impact tests which conducted under the upright and standard seating positions. This study shows the effect of relative velocity between occupant and struck vehicle while occupant is impacted to a front seat's seatback. Although, base on the current accident scenarios, The KHST is performed well enough to protect average adult male occupants. However, Results from the tests indicate small size occupant or higher impact speed may cause sever neck and femur injuries.

수중 프로펠러 명음 현상의 규명에 관한 연구 (A study on the identification of underwater propeller singing phenomenon)

  • 김태형;이형석
    • 한국음향학회지
    • /
    • 제37권2호
    • /
    • pp.92-98
    • /
    • 2018
  • 본 논문은 모형 프로펠러를 대상으로 공동수조 시험, 수중 충격시험, 유한요소해석 및 전산유체해석에 기반하여 수행한 명음 발생 메커니즘 연구이다. 선미 유동을 모사하기 위해 반류망, 프로펠러 및 방향타를 설치하고 수중청음기와 가속도계로 프로펠러 명음 현상의 발생과 소멸을 계측하였다. 유한요소해석을 통해 프로펠러 날개의 고유진동수를 예측하고 접촉 및 비접촉식 충격시험으로 이를 검증하였다. RANS(Reynolds Averaged Navier-Stokes) 방정식 기반 전산유체해석을 통하여 프로펠러 날개 각 단면의 유속과 유효 받음각을 계산하였으며, DES(Detached Eddy Simulation) 기반 고해상도 해석을 통해 명음 발생 위치에서 2-D 날개 단면 뒷전의 와류흘림주파수(vortex shedding frequency) 계산을 수행하였다. 수치적으로 예측된 와류흘림주파수는 모형시험으로 계측한 명음 발생 주파수 및 날개 고유진동수와 일치함을 확인하였다.