DOI QR코드

DOI QR Code

Evaluation of Fracture Behaviours of Cementitious Composites by High-velocity Projectile Impact

고속 비상체 충격에 의한 시멘트 복합체의 파괴거동 평가

  • 민지영 (한국건설기술연구원, 과학기술연합대학원대학교 지반신공간공학) ;
  • 조현우 (한국건설생활환경시험연구원) ;
  • 이장화 (한국건설기술연구원) ;
  • 김성욱 (한국건설기술연구원) ;
  • 문재흠 (한국건설기술연구원)
  • Received : 2015.05.11
  • Accepted : 2015.10.06
  • Published : 2015.11.01

Abstract

An importance of infrastructures' protection against crash or blast loading has been an emerging issue as structures are becoming much bigger and population densities in downtown are growing up. However, there exists no such a standard to evaluate the protection performance of construction material itself. Prior to building standards for protection assessment techniques, this study performed gas-gun propelled projectile impact tests with series of contact-type monitoring systems to investigate the applicability of each sensing type. Through the impact tests, failure modes and protection performances of both normal concrete and UHPC (Ultra High Performance Concrete) reinforced by steel fibers were also evaluated. The results showed that LVDT could be applicable for the impact test among contact-type sensors and UHPC with fibers had a remarkable potential to improve protection against impact loading.

공공시설물의 대형화 및 도심지로의 인구 밀집화에 따라 충돌 또는 폭발과 같은 하중조건 하에서의 구조물 방호성능의 중요성이 대두되고 있다. 그러나 구조물의 방호설계 및 시공에 있어서 필수적이라 할 수 있는 구조 재료 또는 자재에 대한 방호성능 평가기준은 현재 정립되어 있지 않은 실정이다. 따라서 본 연구에서는 구조용 자재의 내충격 성능평가 기준 개발 연구의 일환으로 가스건을 사용한 발사체 충격 파괴시험을 콘크리트 시험체에서 수행함과 동시에, 다양한 접촉식 계측 센서의 적용 가능성을 확인하고자 하였다. 또한, 충격 파괴시험을 통해 일반 콘크리트 및 강섬유가 보강된 초고성능콘크리트의 파괴모드 및 방호성능에 대한 평가를 수행하였다. 실험 수행 결과, 접촉식 계측센서 중 LVDT 변위계의 적용 가능성을 확인하였으며, UHPC의 경우 혼입된 보강섬유의 효과로 인해 일반 콘크리트에 비해 우수한 방호성능을 보여주었다.

Keywords

References

  1. Bhatti, A.Q., Kishi, N., and Tan, K.H. (2011), Impact resistant behaviour of RC slab strengthened with FRP sheet, Materials and Structures, 44(10), 1855-1864. https://doi.org/10.1617/s11527-011-9742-9
  2. Kim, J-H. and Park, T-H. (2011), Analysis Techniques of Blast Resistance Concrete Structures and Concrete Material Model, Journal of the Korea Concrete Institute, 23(2), 30-36.
  3. Kim, S-B., Ha, J-H., Cho, Y-G., and Yi, N-H. (2011), Retrofit Materials for Improving Blast Resistance of Structures, Journal of the Korea Concrete Institute, 23(2), 42-46.
  4. Kim, S.H., Kang, H.-K., Hong, S-G., Kim, G-Y., and Yun, H-D. (2014), Impact Resistance of Steel Fiber-Reinforced Concrete Panels Under High Velocity Impact-Load, Journal of the Korea Concrete Institute, 26(5), 731-739. https://doi.org/10.4334/JKCI.2014.26.6.731
  5. Lee, J., Shin H-O., Min, K.H., and Yoon, Y.S. (2013), Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet, Journal of the Korea Institute for Structural Maintenance and Inspection, 17(3), 1-9. https://doi.org/10.11112/jksmi.2013.17.3.001
  6. Li, L., Lee, J., Min, K.H., and Yoon, Y.S. (2013), Evaluating Local Damages and Blast Resistance of RC Slabs Subjected to Contact Detonation, Journal of the Korea Institute for Structural Maintenance and Inspection, 17(1), 37-45. https://doi.org/10.11112/jksmi.2013.17.1.037
  7. Riedel, W., Noldgen, M., Strasburger, E., Thoma, K., and Fehling, E. (2010), Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles, Nuclear Engineering and Design, 240(10), 2633-2642. https://doi.org/10.1016/j.nucengdes.2010.07.036
  8. Schenker, A., Anteby, I., Gal, E., Kivity, Y., Nizri, E., Sadot, O., Michaelis, R., Levintant, O., and Ben-Dor, G. (2008), Full-scale field tests of concrete slabs subjected to blast loads, International Journal of Impact Engineering, 35, 184-198. https://doi.org/10.1016/j.ijimpeng.2006.12.008
  9. Sugano, T., Tsubota, H., Kasai, Y., Koshika, N., Ohnuma, H., Riesemann, W.A., Bickel, D.C., and Parks, M.B. (1993), Local damage to reinforced concrete structures caused by impact of aircraft engine missiles Part 1. Test program, method and results, Nuclear Engineering and Design, 140, 387-405. https://doi.org/10.1016/0029-5493(93)90120-X
  10. Yoon, W-S., Cho, S-G., and Joe, Y-H. (2011), Concrete Structural Behavior under Blast Loading According to Blast and Impact, Journal of the Korea Concrete Institute, 23(2), 23-29. https://doi.org/10.4334/JKCI.2011.23.1.023
  11. Wua, C., Oehlers, D.J., Rebentrost, M., Leach, J., and Whittaker, A.S. (2009), Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs, Engineering Structures, 31, 2060-2069. https://doi.org/10.1016/j.engstruct.2009.03.020
  12. Yusof, M.A., Nor, N.M., Ismail, A., Peng, N.C., Sohaimi, R.M., and Yahya, M.A. (2013), Performance of Hybrid Steel Fibers Reinforced Concrete Subjected to Air Blast Loading, Advances in Materials Science and Engineering, 2013, Article ID 420136, 1-7.

Cited by

  1. Evaluating the Resistance Performance of the VAEPC and the PAFRC Composites against a Low-Velocity Impact in Varying Temperature vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/7901512