• Title/Summary/Keyword: High Throughput Screening System

Search Result 75, Processing Time 0.024 seconds

Novel Discovery of LINE-1 in a Korean Individual by a Target Enrichment Method

  • Shin, Wonseok;Mun, Seyoung;Kim, Junse;Lee, Wooseok;Park, Dong-Guk;Choi, Seungkyu;Lee, Tae Yoon;Cha, Seunghee;Han, Kyudong
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.87-95
    • /
    • 2019
  • Long interspersed element-1 (LINE-1 or L1) is an autonomous retrotransposon, which is capable of inserting into a new region of genome. Previous studies have reported that these elements lead to genomic variations and altered functions by affecting gene expression and genetic networks. Mounting evidence strongly indicates that genetic diseases or various cancers can occur as a result of retrotransposition events that involve L1s. Therefore, the development of methodologies to study the structural variations and interpersonal insertion polymorphisms by L1 element-associated changes in an individual genome is invaluable. In this study, we applied a systematic approach to identify human-specific L1s (i.e., L1Hs) through the bioinformatics analysis of high-throughput next-generation sequencing data. We identified 525 candidates that could be inferred to carry non-reference L1Hs in a Korean individual genome (KPGP9). Among them, we randomly selected 40 candidates and validated that approximately 92.5% of non-reference L1Hs were inserted into a KPGP9 genome. In addition, unlike conventional methods, our relatively simple and expedited approach was highly reproducible in confirming the L1 insertions. Taken together, our findings strongly support that the identification of non-reference L1Hs by our novel target enrichment method demonstrates its future application to genomic variation studies on the risk of cancer and genetic disorders.

Genotoxicity on $21{\alpha}-and\;{\beta}-methylmelianodiol$, a Component of Poncirus trifoliata, in Bacterial and Mammalian Cells

  • Ryu, Jae-Chun;Kim, Youn-Jung;Kim, Mi-Soon;Kim, Min-Ji;Sarma, Sailendra Nath;Lee, Seung-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.172-178
    • /
    • 2005
  • [ $21{\alpha}$ ]- and ${\beta}$-Methylmelianodiol were isolated as the inhibitor of IL-5 bioactivity from Poncirus tripoliata. To develope as an anti-septic drug, the genotoxicity of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ was subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of quantity. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of $21{\alpha}-methylmelianodiol$ was determined the concentration of $25.51\;{\mu}g/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. Also $21{\beta}-methylmelianodiol$ was determined the concentration of $24.15\;{\mu}g/mL\;and\;\;22.46\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, DNA damage was not observed both $21{\alpha}-methylmelianodiol\;and\;21{\beta}-methylmelianodiol$ in mouse lymphoma cell line. Also, the mutant frequencies in the treated cultures were similar to the vehicle controls, and none of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ with and without S-9 doses induced a mutant frequency over. twice the background. It is suggests that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ are non-mutagenic in MOLY assay. The results of this battery of assays indicate that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ have no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$, as the optimal candidates with both no genotoxic potential and IL-5 inhibitory effects must be chosen.

The Effects of Cesium, Strontium and Cobalt on Cell Toxicity in the 2D and 3D Cell Culture Platforms (단층 및 입체 세포배양환경에서 세슘, 스트론튬 및 코발트가 세포 독성에 미치는 영향 분석)

  • Kim, Gi Yong;Kang, Sung-Min;Jang, Sung-Chan;Huh, Yun Suk;Roh, Changhyun
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • Currently, there are 442 operating nuclear power plants in the world, and 62 more are under construction. According to this reasoning, the treatment of radioactive waste is important to prevent the environmental ecosystem including humans, animals, and plants. Especially, a leakage of radioactive waste causes not only regional problem but also serious global one. In this study, we demonstrate the effect of radioisotopes (e.g., cesium, strontium, and cobalt) on a 3D culture cell. To develop the 3D cell culture system, we used a 96-well-culture plate with biocompatible agarose hydrogel. Using this method, we can perform the 3D cell culture system with three different cell lines such as HeLa, HepG2, and COS-7. In addition, we conducted a cell viability test in the presence of radioisotopes. Interestingly, the 3D morphological cells showed 42% higher cell viability than those on the 2D against cesium. This result indicates that the 3D platform provides cells morphological and physiological characteristic similar to in vivo grown tissues. Moreover, it overcomes the limitation of conventional cell culture system that can't reflect in vivo systems. Finally, we believe that the proposed approach can be applied a new strategy for simple high-throughput screening and accurate evaluation of metal toxicity assay.

Discrimination of African Yams Containing High Functional Compounds Using FT-IR Fingerprinting Combined by Multivariate Analysis and Quantitative Prediction of Functional Compounds by PLS Regression Modeling (FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 고기능성 아프리칸 얌 식별 및 기능성 성분 함량 예측 모델링)

  • Song, Seung Yeob;Jie, Eun Yee;Ahn, Myung Suk;Kim, Dong Jin;Kim, In Jung;Kim, Suk Weon
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • We established a high throughput screening system of African yam tuber lines which contain high contents of total carotenoids, flavonoids, and phenolic compounds using ultraviolet-visible (UV-VIS) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. The total carotenoids contents from 62 African yam tubers varied from 0.01 to $0.91{\mu}g{\cdot}g^{-1}$ dry weight (wt). The total flavonoids and phenolic compounds also varied from 12.9 to $229{\mu}g{\cdot}g^{-1}$ and from 0.29 to $5.2mg{\cdot}g^{-1}$dry wt. FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and $1,100-950cm^{-1}$, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins ($1,700-1,500cm^{-1}$), phosphodiester groups from nucleic acid and phospholipid ($1,500-1,300cm^{-1}$) and carbohydrate compounds ($1,100-950cm^{-1}$). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate the 62 African yam tuber lines into three separate clusters corresponding to their taxonomic relationship. The quantitative prediction modeling of total carotenoids, flavonoids, and phenolic compounds from African yam tuber lines were established using partial least square regression algorithm from FT-IR spectra. The regression coefficients ($R^2$) between predicted values and estimated values of total carotenoids, flavonoids and phenolic compounds were 0.83, 0.86, and 0.72, respectively. These results showed that quantitative predictions of total carotenoids, flavonoids, and phenolic compounds were possible from FT-IR spectra of African yam tuber lines with higher accuracy. Therefore we suggested that quantitative prediction system established in this study could be applied as a rapid selection tool for high yielding African yam lines.

Simultaneous estimation of fatty acids contents from soybean seeds using fourier transform infrared spectroscopy and gas chromatography by multivariate analysis (적외선 분광스펙트럼 및 기체크로마토그라피 분석 데이터의 다변량 통계분석을 이용한 대두 종자 지방산 함량예측)

  • Ahn, Myung Suk;Ji, Eun Yee;Song, Seung Yeob;Ahn, Joon Woo;Jeong, Won Joong;Min, Sung Ran;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.60-70
    • /
    • 2015
  • The aim of this study was to investigate whether fourier transform infrared (FT-IR) spectroscopy can be applied to simultaneous determination of fatty acids contents in different soybean cultivars. Total 153 lines of soybean (Glycine max Merrill) were examined by FT-IR spectroscopy. Quantification of fatty acids from the soybean lines was confirmed by quantitative gas chromatography (GC) analysis. The quantitative spectral variation among different soybean lines was observed in the amide bond region ($1,700{\sim}1,500cm^{-1}$), phosphodiester groups ($1,500{\sim}1,300cm^{-1}$) and sugar region ($1,200{\sim}1,000cm^{-1}$) of FT-IR spectra. The quantitative prediction modeling of 5 individual fatty acids contents (palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid) from soybean lines were established using partial least square regression algorithm from FT-IR spectra. In cross validation, there were high correlations ($R^2{\geq}0.97$) between predicted content of 5 individual fatty acids by PLS regression modeling from FT-IR spectra and measured content by GC. In external validation, palmitic acid ($R^2=0.8002$), oleic acid ($R^2=0.8909$) and linoleic acid ($R^2=0.815$) were predicted with good accuracy, while prediction for stearic acid ($R^2=0.4598$), linolenic acid ($R^2=0.6868$) had relatively lower accuracy. These results clearly show that FT-IR spectra combined with multivariate analysis can be used to accurately predict fatty acids contents in soybean lines. Therefore, we suggest that the PLS prediction system for fatty acid contents using FT-IR analysis could be applied as a rapid and high throughput screening tool for the breeding for modified Fatty acid composition in soybean and contribute to accelerating the conventional breeding.