• Title/Summary/Keyword: High Tensile Brass

Search Result 8, Processing Time 0.023 seconds

A Study on Surface Characteristics of High Tensile Brass with Molybdenum Flame Spray Treatment (고력황동의 몰리브덴 화염용사에 따른 표면 특성에 관한 연구)

  • Jung, Dong-Hyun;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.38-45
    • /
    • 2018
  • Molybdenum flame spray coatings are widely used in industrial fields to enhance the performance of mechanical component parts such as pistons, shafts and clutches. This study investigates the surface characteristics of high tensile brass with molybdenum flame spray treatment using the clutch material for small ship. The surface characteristics after molybdenum flame spray treatment in high tensile brass were quantitatively analyzed for surface composition, coating layer thickness, friction coefficient, abrasion width and phenomenon, micro-hardness, and surface roughness.

A Study on the Microstructures and Mechanical Properties of Squeeze Cast High Strength Yellow Brass, Al Bronze and Sn Bronze Alloys (고강도 황동, 알루미늄 청동 및 인청동합금의 용탕단조 조직과 기계적 성질에 관한 연구)

  • Han, Yo-Sub;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.19 no.6
    • /
    • pp.484-492
    • /
    • 1999
  • The microstructures and mechanical properties of high strength yellow brass, Al bronze and Sn bronze alloys fabricated by gravity die casting and squeeze casting were investigated. A rapid cooling of casting was enhanced by pressure applied during solidification of Cu alloys, the cooling rate of casting was more great for high strength yellow brass alloy than other Cu alloys. Grain size and phases of the squeeze cast products become refined to 1/2 level compared to gravity die castings. Squeeze cast Al bronze and high strength yellow brass has about 10-20% higher yield and tensile strength and slighter decreased or nearly same elongation, compared to gravity die cast ones. Sn bronze has nearly same strength and hardness, but shows increased in elongation, compared to gravity die cast ones.

  • PDF

Friction and Wear Properties of High Manganese Steel in Brake Friction Material for Passenger Cars (자동차용 브레이크 마찰재에서 고망간강의 마찰 및 마모특성)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Song, Myungsuk
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 2020
  • In this study, we investigate the mechanical properties of high manganese steel, and the friction and wear characteristics of brake friction material containing this steel, for passenger car application, with the aim of replacing copper and copper alloys whose usage is expected to be restricted in the future. These steels are prepared using a vacuum induction melting furnace to produce binary and ternary alloys. The hardness and tensile strength of the high manganese steel decrease and the elongation increases with increase in manganese content. This material exhibits high values of hardness, tensile strength, and elongation; these properties are similar to those of 7-3 brass used in conventional friction materials. We fabricate high manganese steel fibers to prepare test pad specimens, and evaluate the friction and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The brake pad material is found to have excellent friction stability in comparison with conventional friction materials that use 7-3 brass fibers; particularly, the friction stability at high temperature is significantly improved. Additionally, we evaluate the wear using a wear test method that simulates the braking conditions in Europe. It is found that the amount of wear of the brake pad is the same as that in the case of the conventional friction material, and that the amount of wear of the cast iron disc is reduced by approximately 10. The high manganese steel is expected to be useful in the development of eco-friendly, copper-free friction material.

Failure Analysis of Metallic Components (금속소재 부품의 고장분석 사례)

  • Song Jin-Hwa;Hong Ki-Jung;Chang Chang-Hwan;Kim Young-Sub
    • Journal of Applied Reliability
    • /
    • v.6 no.1
    • /
    • pp.51-61
    • /
    • 2006
  • Failure analyses were conducted on a crank shaft and a chock liner by using X-ray diffraction, optical microscopy and SEM/EDS techniques. In the crank shaft, a crack developed where a maximum tensile stress coincided with band structure formed by hot forging. The maximum tensile stress was observed to originate from volume expansion during high frequency induction heat treatment and the band structure to develop between upper and lower dies during hot forging. In the chock liner, the wear mechanism varied with the chemical affinity and hardness of liner material relative to friction pair of housing liner. Brass of low chemical affinity and hardness compared to housing liner showed uniform adhesive wear. STS 304 and STS 420J2 of high chemical affinity showed galling and scoring respectively.

  • PDF

Effects of Ti Addition and Homogenizing Heat Treatment on the Mechanical Properties of Centrifugal Cast Cu-Zn-Al Alloy (원심주조한 Cu-Zn-Al계 합금의 기계적 성질에 미치는 Ti 첨가와 균질화 처리의 영향)

  • Kwon, Young-Hwan;Jea, Chang-Wooing;Yoon, Jae-Hong;Kang, Chang-Yong;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.450-457
    • /
    • 1997
  • Effects of Ti addition and homogenizing heat treatment on the mechanical properties in Cu-Zn-Al alloy (high strength yellow brass) were investigated. Grain refinement was successfully achieved by Ti addition. The microstructure, which was composed of island or fine feather-like branched Ti compounds was changed to feather-like eutectic microstructure as the content of Ti increased. The highest hardness value was obtained for 0.5 wt.% Ti specimen and the second was Ti non-added specimen in as-cast condition. The highest tensile strength was obtained for 0.5 wt.% Ti specimen. Because of the presence of cast defects and worse castability, tensile strength decreased as the content of Ti increased. Elongation increased with increasing homogenizing time and temperature; remarkable increase was obtained for $400^{\circ}C$ homogenizing temperature in the 0.5 wt.% Ti specimen. For $500^{\circ}C$ and $600^{\circ}C$ homhgenizing, temperature, high elongation was obtained in 2 and 4 wt.% Ti specimen.

  • PDF

Application of reflow soldering method for laminated high temperature superconductor tapes

  • Lee, Nam-Jin;Oh, Sang-Soo;Kim, Ho-Sup;Ha, Dong-Woo;Ha, Hong-Soo;Ko, Rock-Kil;Shin, Hyung-Seop;Youm, Do-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.9-12
    • /
    • 2010
  • A lamination system using reflow soldering was developed to enhance the mechanical properties of high temperature superconductor (HTS) tape. The laminated coated conductor tape was fabricated using the continuous lamination process. The mean, maximum, and minimum tensile loads in a T-peel test of the laminated coated conductor were 9.9 N, 12.5 N, and 7.6 N, respectively. The critical current ($I_c$) distributions of the non-laminated and laminated coated conductor were compared using anon-contact Hall probe method. The transport $I_c$ nearly matched the non-contact $I_c$; however, some degraded Ic regions were found on the length of 800 cm of laminated coated conductor. We confirmed that the cause of the partially degraded $I_c$ was due to an increase in line tension by (1) solidification induced by a change of composition that usually occurs in molten brass (Cu, Zn) in solder, or (2) non-homogeneity of the thickness of the coated conductor or metal tapes. We suggest that reflow soldering is a promising method for reinforced HTS tape if the controlling solder thickness and lamination guide are modified.

Microstructure of Squeeze-cast Aluminum Matrix Composite Reinforced by Fine Steel Wires (용탕단조한 미세강선 보강 알루미늄 복합재료의 미세조직에 대한 고찰)

  • Jeong, Bong-Yong;Lee, In-Woo;Park, Heung-Il;Kim, Jun-Su;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.455-463
    • /
    • 1994
  • Aluminum matrix composites reinforced by fine steel wires were fabricated by squeeze casting process. Preforms made of fine steel wires were prepared with different surface conditions, namely uncoated(TN), carbo-nitriding treated(TT), and brass coated(TA). Squeeze casting were performed under the pressure of $1500kg/cm^2$ for 3min. during solidification, and pouring temp. of the melt being $750^{\circ}C$ and the steel mold being preheated at $250^{\circ}C$. Microstructural characteristics were evaluated, particularly concerned with the effect of the surface conditions of the preforms. The results obtained from this study are like these. TN specimens show partially non-wetted regions, due to easy formation of oxides on the surface of the fine steel wires. TT specimens show no interfacial reaction between the steel wires and the aluminum alloy matrix, possibly due to the formation of carbo-nitrided zone on the surface of the steel wires. TA specimens show excellent wettabillity between the reinforced steel wires and the aluminum alloy matrix and very thin interfacial zone is formed between them. During the solution hardening treatment of TA specimens, thickness of the interfacial reaction zones were increased with the solution treating time. TA specimens show typical ductile fracture in tensile test, but TT specimens show brittle fracture possibly due to the formation of the brittle hard surface on the steel wires during carbo-nitriding treatments. TA specimens which were reinforced with 40 vol.% of the fine steel wires exhibit high tensile strength of $77.1kgf/mm^2$ and impact value of $8.1kgf-m/cm^2$.

  • PDF

THE EFFECT OF TEMPERATURE CHANGES ON THE PHYSICAL PROPERTIES OF POSTERIOR COMPOSITE RESINS (구치부용 복합 레진 가열시 물리적 성질의 변화에 관한 실험적 연구)

  • Park, Yeon-Hong;Min, Byung-Soon;Choi, Ho-Young;Park, Sung-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study was to examine the effect of temperature dependence of the behavior on the physical properties of posterior composite resins. Three light cure posterior composite resins (Heliomolar, Litefil-P, and P-50) and one chemical cure posterior composite resin (Bisfil-II) were used as experimental materials. Composite resin was placed in a cylindrical brass mold (2.5 mm high and 6.5 mm inside diameter) that was rested on a glass plate. Another flat glass was placed on top of the mold, and the plate was tightly clamped together. After the mold had been filled with the light cure composite material, the top surface was cured for 30 seconds with a light source. Chemical cure resin specimens were made in the same manner as above. Three hundreds and twenty composite resin specimens were constructed from the four composite materials. One hundred and sixty specimens of them were placed in a heater at $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$, $125^{\circ}C$, $150^{\circ}C$, $175^{\circ}C$ and $200^{\circ}C$ for 5 minutes or 10 minutes respectively before compressive strengths were measured. Another one hundred and sixty specimens were tested for the diametral tensile strengths in the same way as above. They were randomly divided into eight groups according to the mode of heating methods as follows and stored in distilled water at $37^{\circ}C$ for 24 hours. Group $37^{\circ}C$ - specimens were stored at $37^{\circ}C$ in distilled water for 24 hours. Group $50^{\circ}C$ - specimens were heated at $50^{\circ}C$ after curing. Group $75^{\circ}C$ - specimens were heated at $75^{\circ}C$ after curing. Group $100^{\circ}C$ - specimens were heated at $100^{\circ}C$ after curing. Group $125^{\circ}C$ - specimens were heated at $125^{\circ}C$ after curing. Group $150^{\circ}C$ - specimens were heated at $150^{\circ}C$ after curing. Group $175^{\circ}C$ - specimens were heated at $175^{\circ}C$ after curing. Group $200^{\circ}C$ - specimens were heated at $200^{\circ}C$ after curing. Twenty specimens of each of four composite resins were respectively made by insertion of materials into same mold for examining the dimensional changes between before and after heating. The final eighty specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before testing the dimensional changes. Compressive and diametral tensile strengths were measured crosshead speed 1mm/minute and 500Kg in full scale with a mechanical testing machine (DLC 500 Type, Shimadzu Co., Japan). Dimensional changes were determined by measuring the diametral changes of eighty specimens with micrometer (Mitutoyo Co., Japan). Results were as follows: 1. Diametral tensile strengths of specimens in all groups were increased with time heated compared with control group except for that in group $50^{\circ}C$ and the maximum diametral tensile strength was appeared in the specimen of Litefil-P heated for 10 minutes at $100^{\circ}C$. In heliomolar and P-50, it could be seen in the specimen heated for 10 minutes at $150^{\circ}C$, but in Bisfil-II, it could be found in the specimen heated for 5 minutes at $150^{\circ}C$. 2. Compressive strengths of specimens in all groups was tended to be also increased with time heated but that in group $50^{\circ}C$ and the maximum compressive strengths were showed in the same specimens conditioned as the diametral tensile strengths of four composite materials tested. 3. In Heliomolar, Litefil-P, and Bisfil-II, it was decreased in diameters of resin specimens between before heating and increased in diameters of resin specimens after storing in distilled water, but it was not in P-50. 4. There is little difference in diametral tensile strengths, compressive strengths, and dimensional changes followed by heating the resin specimens for 5 minutes and 10 minutes, but there is no statistical significances.

  • PDF