• 제목/요약/키워드: High Temperature Tensile Strength

검색결과 722건 처리시간 0.029초

고강도강재의 고온인장특성 및 용접시 잔류응력특징에 관한 연구 (A Study on the High Temperature Tensile Property and the Characteristics of Residual Stress in Welds of High Strength Steels)

  • 장경호;이진형;신영의
    • Journal of Welding and Joining
    • /
    • 제22권4호
    • /
    • pp.50-58
    • /
    • 2004
  • In this study, high temperature tensile properties of high strength steels(POSTEN60, POSTEN80) were investigated. The three-dimensional thermal elastic-plastic analyses were conducted to investigate the characteristics of welding residual stresses in welds of high strength steels on the basis of thermal and mechanical properites at high temperature obtained from the experiment. According to the results, high temperature tensile strength of POSTEN60 steel deteriorated slowly to 10$0^{\circ}C$. As the temperature went up, the tensile strength became better because of blue shortness, and it deteriorated radically after reaching to the maximum value around 30$0^{\circ}C$. For the POSTEN80 steel, high temperature tensile strength deteriorated slowly to 20$0^{\circ}C$. As the temperature went up the tensile strength became better and it deteriorated slowly to $600^{\circ}C$ after reached to the maximum value around 30$0^{\circ}C$. Strain of high strength steels at the elevated temperature increased radically after the mercury rose to $600^{\circ}C$. The strain hardening ratio of POSTEN60 steel was larger then that of POSTEN80 steel at the elevated temperature as in the case at the room temperature and it became smaller radically after the mercury rose to 40$0^{\circ}C$. And, in the welding of high strength steels, increasing tensile strength of the steel (POSTEN60

고강도강재의 고온인장특성에 관한 실험적 연구 (A Experimental Study on High Temperature Tensile Property of High Strength Steel)

  • 장경호;이진형;신영의
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 춘계학술발표대회 개요집
    • /
    • pp.260-262
    • /
    • 2003
  • In this study, high temperature tensile properties of high tensile strength steels(POSTEN60, POSTEN80) were investigated by elevated temperature tensile test. According toe the results, high temperature tensile strength of POSTEN60 deteriorated slowly to 100$^{\circ}C$. As the temperature went up the tensile strength became better because of blue shortness and it deteriorated radically after reached to the maximum value around 300$^{\circ}C$. For the POSTEN80, high temperature tensile strength deteriorated slowly to 200$^{\circ}C$.As the temperature went up the tensile strength became better and it deteriorated slowly to 600$^{\circ}C$ after reached to the maximum value around 300$^{\circ}C$. Strain of high tensile strength steels at the elevated temperature increased radically after the mercury rose to 600$^{\circ}C$. The strain hardening ratio of POSTEN60 was larger then that of POSTEN80 at the elevated temperature as in the case at the room temperature and it became smaller radically after the mercury rose to 400$^{\circ}C$.

  • PDF

Ti-6Al-4V 합금의 단시간 고온 노출 시 모재 및 용접부의 인장강도 특성 (Effects on Tensile Strength of Base and Weld Metal of Ti-6Al-4V Alloy in Short Time Exposure to High Temperature)

  • 채병찬
    • 한국군사과학기술학회지
    • /
    • 제17권4호
    • /
    • pp.413-421
    • /
    • 2014
  • Since the structural temperature of a flight vehicle flying at high speed rises rapidly due to aerodynamic heating, it is necessary for optimum structural design to obtain proper material properties at high temperature by taking into account of its operational environment. For a special alloy, analysis data on strength change due to exposure time to high temperature are very limited, and most of them are for an exposure time longer than 30 minutes for long term operations. In this study, base and weld metal samples of Ti-6Al-4V alloy had been prepared and high temperature tensile tests with induction heating were performed, and then high temperature strength characteristics and strength recovery characteristics through cooling have been analyzed. Pre-tests to determine maximum heating rate were performed, and response characteristics for temperature control were confirmed. As a result, high temperature tensile strength appeared to be lower than that of room temperature, but it was higher than that of high temperature of 30 minite exposure listed in MMPDS. In strength recovery through cooling Ti-6Al-4V alloy has shown higher recovery rate compared with other alloys.

자동차용 페라이트계 스테인리스강의 고온인장성질에 미치는 합금원소의 영향 (Effect of Alloying Element on the High Temperature Tensile Property of Ferritic Stainless Steel for Automotive Exhaust System)

  • 송전영;이인섭;안용식
    • 동력기계공학회지
    • /
    • 제14권1호
    • /
    • pp.59-64
    • /
    • 2010
  • Ferritic stainless steel is currently increasingly used for automotive exhaust material. The material for exhaust manifold is used in the temperature range of 500∼$850^{\circ}C$. Therefore, high temperature characteristic is an important one that affects it's life span. It has been investigated the effect of alloying elements of Cr, Mo, Nb, Ti in the ferritic stainless steel for exhaust manifold on the high temperature tensile strength. There was a few difference in the tensile strength at $600^{\circ}C$ with the exception of low Cr steel, but the steels containing higher Cr, Mo or Nb elements showed significantly higher tensile strength at the temperature of $800^{\circ}C$. The precipitates of the specimens after heat treating at the test temperature were electrolytic extracted, and quantitatively analysed using by SEM-EDS and TEM. The alloying elements of Cr and Mo increased the tensile strength as a solid solution strengthener, and on the other hand Nb element enhanced the strength by forming the fine intermetallic compounds such as NbC or $Fe_2Nb$.

고규소(高珪素)-AI합금(合金)의 고온강도(高溫强度)에 관(關)한 연구(硏究) (A Study on the Strength of High-Silicon Aluminium Alloys at Elevated Temperatures)

  • 남태운
    • 한국주조공학회지
    • /
    • 제3권4호
    • /
    • pp.256-261
    • /
    • 1983
  • In this study, the variations of tensile strength and yield strength of Al-20% Si alloy were studied. Copper, magnesium and nickel as alloying elements added from 1% to 3% respectively. The temperature range was from room temperature to $350^{\circ}C$. The refinement of primary silicon crystal was treated with phosphorous addition. The results obtained are as follows: 1. Tensile strnegth and yield strength showed more increased strength in refining treated alloy than that of in nonrefining alloy at elevated temperature. 2. Tensile strength and yield strength were increased with the contents of copper. Tensile strength showed the maximum at $150^{\circ}C$, but yield strength was decreased with increasing temperature. 3. The effect of magnesium addition on tensile strength and yield strength showed the maximum at 1% addition and $150^{\circ}C$. 4. Tensile strength and yield strength showed a slight increase with the content changes of nickel and they were decreased with increasing temperature.

  • PDF

고망간 Twinning Induced Plasticity 강의 인장 특성에 미치는 변형률 속도와 온도의 영향 (Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels)

  • 이정훈;이성학;신상용
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.643-651
    • /
    • 2017
  • Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.

고온 및 저온하에서의 암석의 변형, 파괴 특성 (Failure and Deformation Characteristics of Rock at High and Low Temperatures)

  • 정재훈;김영근;이형원;이희근
    • 터널과지하공간
    • /
    • 제2권2호
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

TIG 용접한 저방사화 페라이트강 (JLF-1)의 고온강도 및 피로수명특성 (High Temperature Tensile Strength and Fatigue Life Characteristics for Reduced Activation Ferritic Steel (JLF-1) by TIG Welding)

  • 윤한기;이상필;김사웅
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1444-1450
    • /
    • 2003
  • The fatigue life and tensile strength of JLF-1 steel (Fe-9Cr-2W-V-Ta) and its TIG weldment were investigated at the room temperature and $400^{\circ}C$. Four kinds of test specimens, which associated with the rolling direction and the TIG welding direction were machined. The base metal of JLF-1 steel represented almost anisotropy in the tensile properties for the rolling direction. And the base metal of JLF-1 steel showed lower strength than that of TIG weldment. Also, the strength of all materials entirely decreased in accordance with elevating test temperature. Moreover, the fatigue limit of weld metal was largely increase than that of base metal at both temperatures. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The fatigue limit of JLF-1 steel decreased in accordance with elevating test temperature. The SEM fractography of tensile test specimen showed conspicuous cleavage fracture of a radial shape. In case of fatigue life test specimen, there were so many striations at crack initiation region, and dimple was observed at final fracture region as a ductile fracture mode.

고온과 고온노출 후 GFRP 보강근의 잔존인장성능 비교 (A Comparison of Residual Tensile Properties of GFRP Reinforcing Bar at High Temperature and after Exposure to High Temperature)

  • 김성도;문도영
    • 대한토목학회논문집
    • /
    • 제35권1호
    • /
    • pp.77-84
    • /
    • 2015
  • 고온에 노출된 GFRP 보강근의 인장실험을 수행하였다. 본 실험을 위한 고온노출조건은 $200^{\circ}C$ 이하의 온도에 3분간 노출하는 것으로 하였다. 이러한 조건은 다른 연구자들의 시험에서 적용한 고온노출조건과 비교하여 경미한 고온노출조건이다. 고온에서와 고온노출 후 GFRP 보강근의 인장강도와 탄성계수를 비교하였다. 실험결과, 고온에서 GFRP 보강근의 인장성능이 감소하는 것으로 나타났으나, 고온노출 후 보강근의 인장성능은 거의 고온노출전의 수준으로 회복되는 것으로 나타났다. 이와 같은 결과는 화재로 손상 받은 GFRP 보강 콘크리트 구조물의 평가를 위하여 중요한 자료가 된다.

AL 2024-T3의 단시간 고온 강도 특성 (Strength Characteristics of An Aluminum 2024-T3 in Short-time High Temperature Environment)

  • 이열화;김재영;김헌주;박경민;김종환
    • 한국군사과학기술학회지
    • /
    • 제4권1호
    • /
    • pp.255-263
    • /
    • 2001
  • The main purpose of this paper is to investigate strength characteristics of Aluminum 2024-T3 in high temperature environment. Tensile test of Aluminum 2024-T3 has been carried out in high temperature environment. The stress-strain relations are investigated with temperature and Young's modulus, yield strength and ultimate strength are deduced from the test results. The modulus and strength of the test are compared with those of MIL HANDBOOK and tips on structural design in high temperature environment are suggested.

  • PDF