• Title/Summary/Keyword: High Temperature Flexural Test

검색결과 48건 처리시간 0.025초

PET 섬유 보강재를 사용한 섬유 보강 콘크리트의 성능 평가에 관한 연구 (A study on performance evaluation of fiber reinforced concrete using PET fiber reinforcement)

  • 오리온;유용선;박찬기;박성기
    • 한국터널지하공간학회 논문집
    • /
    • 제25권4호
    • /
    • pp.261-283
    • /
    • 2023
  • 본 연구는 최근 섬유 보강 콘크리트의 성능 보강재료 적용이 검토되고 있는 합성섬유 종류 중 PET (Polyethylene terephthalate) 섬유 보강재에 대하여 단기 및 장기 성능변화 여부 검토를 통해 PET 섬유의 성능 안정성을 검토하고자 하였다. 이를 위하여 PET 섬유를 산/알칼리 환경에 노출시킨 후 잔류 성능을 분석하였으며, PET 섬유 보강 콘크리트 배합의 재령별 휨강도, 등가 휨강도, 그리고 콘크리트 시편에서 채취한 PET 섬유를 주사현미경(SEM)을 이용하여 표면의 변화를 분석하였다. PET 섬유의 산/알칼리 환경 노출 실험결과, 산성 환경에서는 83.4~96.4%, 알칼리 환경에서는 42.4~97.9%의 강도 보유율을 나타내었다. 섬유 자체의 강도 보유율은 고온의 강알칼리 조건에 노출될 경우 강도 감소가 크게 발생하는 것을 확인할 수 있었으며, 강도 보유율은 에폭시로 코팅된 가공사에서 강도보유율이 증가하는 것으로 나타났다. PET 섬유 보강 콘크리트 배합의 휨강도 및 등가 휨강도 실험결과에서는 휨강도 저하가 나타나지 않았으며, 등가 휨강도 결과도 섬유 보강재로써의 성능 저하는 나타나지 않았다. SEM 분석 결과에서도 PET 보강 섬유의 표면 손상이나 단면 변화가 관찰되지 않았다. 이와 같은 결과는 섬유 보강 콘크리트가 초기 고온 노출되는 경우나 재령 경과에 따라서도 시멘트 콘크리트 환경에서는 PET 보강 섬유가 어떠한 손상이나 단면 감소가 발생하지 않는다는 것을 의미하며, 시멘트 콘크리트 환경에서는 PET 섬유에 대한 강도 감소 영향은 우려하지 않아도 된다는 것으로 판단된다. 재령에 따른 휨강도, 등가 휨강도도 안정적으로 발현됨에 따라 PET 섬유 보강재의 사용으로 우려되는 가수분해로 인한 성능저하 등이 발생하지 않는 것으로 볼 수 있으며, 안정적인 잔류강도 보유 특성을 나타내는 것을 확인하였다.

신속개방형 콘크리트 도로포장재의 설계를 위한 평가 연구(3) (A Study and Evaluation of Super High Early Strength Concrete as Pavement Overlay Materials for Early Traffic Opening(3))

  • 임채용;엄태선;유재상;이종열;엄주용;조윤호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.607-612
    • /
    • 2002
  • In road pavements, it is known that cement concrete pavement has superior durability, safety compared. But in repairing pavement, cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixed concrete because of rapid setting time, high slump loss and other restrictions. We developed special cement developing 1 day strength of over 30.0N/mm$^2$ to open the road within 1 day and workable time is maintained over 1 hour so that it can be used as ready mixed concrete. We performed experimental overlay construction with the cement and evaluated the mechanical property and the durability. At curing temperature of 8-l8$^{\circ}C$,the flexural strength was 6.4N/mm$^2$at 1 day, so that the road can be open to traffic within 1 day. In durability test, the hardened concrete showed higher durability than Portland cement concrete.

  • PDF

반응소결 SiC 재료와 $SiC_f/SiC$ 복합재료의 특성 (CHARACTERIZATION OF MONOLITHIC RS-SiC AND RS-$SiC_f/SiC$ COMPOSITE MATERIALS)

  • 진준옥;이상필;이진경;윤한기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.376-380
    • /
    • 2003
  • The microstructure and the mechanical properties of RS-SiC and RS-$SiC_f/SiC$ materials have been investigated in conjunction with the content of residual silicon and porosity. The mechanical properties of RS-SiC materials suffered from the thermal exposure were also examined. RS-SiC based materials bave been fabricated using the complex matrix slurry with different composition ratios of SiC and C panicles. The characterization of RS-SiC based materials was investigated by means of SEM, EDS ~d three point bending test. Based on the mechanical property-microstructure correlation, the high temperature applicability of RS-SiC based materials was discussed.

  • PDF

재생 골재의 고부가가치화에 대한 연구 (A Study on The Great Supplementary Value of Recycled Aggregates)

  • 심종성;문도영;박성재;김용재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.41-46
    • /
    • 2003
  • Until now, the quantity to recycle wasted concrete as the great supplementary value was very little. But considering a insufficiency of the present state of aggregates, the recycling of wasted aggregates is indispensable. This study will offer the basic application data of the recycled aggregates to make by the new attempt and offer the basic data of the great supplementary value of recycled aggregate to make good use of precast process. The result of compressive strength, tensile strength, flexural strength and drying shrinkage test of concrete by recycled aggregates were similar to the property of normal aggregate concrete, and the contrary effect of recycled aggregate by high temperature steam curing do not have been found out. Therefore the great supplementary value of recycled aggregate to make good use of precast process is possible way to be helpful to a insufficiency of the present state of aggregates.

  • PDF

Fabrication and Strength Properties of LPS-SiC based materials

  • Lee, Sang-Pill;Kohyama, Akira
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.25-28
    • /
    • 2006
  • This paper dealt with the LPS process for the development of high performance SiC materials, based on the detailed analysis of their microstructure and mechanical properties. The submicron SiC powder was used for the fabrication of LPS-SiC materials. A mixture of $Al_2O_3$ and $Y_2O_3$ particles was also used as a sintering additive in the LPS process. LPS-SiC materials were fabricated at different temperatures, using various additive composition ratio ($Al_2O_3/Y_2O_3$). The total amount of additive materials ($Al_2O_3+Y_2O_3$) was fixed as 10 wt%. The characterization Of LPS-SiC materials was investigated by means of SEM, XRD and three point bending test. The LPS-SiC material represented a relative density of about 98 % and a flexural strength of about 800MPa, when it was fabricated at the temperature of $1820^{\circ}C$ and the additive compositional ratio of 1.5.

  • PDF

FRP로 보강된 철근콘크리트보의 열전도해석 및 내화성능 평가 (Heat Conduction Analysis and Fire Resistance Capacity Evaluation of Reinforced Concrete Beams Strengthened by FRP)

  • 임종욱;박종태;김정우;서수연
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권6호
    • /
    • pp.1-8
    • /
    • 2018
  • 본 연구의 목적은 해석적 방법을 통하여 내화 재료의 특성을 파악하고 섬유 강화 폴리머로 보강된 철근콘크리트의 보의 적절한 내화설계 방법을 제안하는 것이다. 이를 위해, 내화재료의 가열실험을 실시하고 유한요소해석을 통해 열전도율과 비열을 구하고 또한 고온에서 FRP로 보강된 철근콘크리트 보 실험체에 대한 유한요소 해석을 통해 실험결과와 해석결과를 비교하였다. 이 과정에서 실험과 해석적 접근의 신뢰성을 확인하였다. 최종적으로 FRP로 보강된 철근콘크리트 보의 열적특성을 제안된 해석 방법으로 분석하고 고온으로 감소된 휨내력을 계산하였다. 최종적으로 제안된 방법을 이용하여 FRP로 보강된 부재에서 고온 노출시 열특성을 반영한 부재의 열전도를 파악하고 이를 이용하여 내력을 산정할 수 있는 것으로 나타났다.

고강도 콘크리트와 강섬유 보강 콘크리트의 장기거동 특성에 관한 상관관계 연구 (An experimental study on the relationship between SFRC and HSC at long-term response.)

  • 서종명;이주하;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.317-320
    • /
    • 2005
  • In recent years, according to the development of construction technique, the constructions of longer span bridges, taller buildings, deeper offshore structures, and other megastructures are calling for construction materials with increasingly improve properties. So, the demand for high-strength concrete(HSC) have been increased and many new structures have been built using HSC with the compressive strength about 100MPa. However, it is well-known that as the strength of concrete increases, concrete becomes more brittle. Recent studies, however, shown that the brittleness of HSC can be improved by adding some fibers to the concrete. Especially steel fiber reinforced concrete(SFRC) can be used in this case. Many research works have shown that SFRC results in better crack and deflection control, higher shear strength, improved fatigue performance, increased impact strength, reformed flexural strength, advanced fracture toughness and enhanced postcracking resistance. So, this is a study on the long-term response of SFRC applied to HPC about 40MPa. Therefore, in this study, the test results of twenty-six high-strength concrete specimens and steel fiber-reinforced concrete specimens, with steel fiber content of 1 $\%$ by volume were presented. And the results are analyzed by using of the factors of time, mix properties, humidity/temperature, and loading conditions.

  • PDF

Behavior of RC beams strengthened with NSM CFRP strips under flexural repeated loading

  • Fathuldeen, Saja Waleed;Qissab, Musab Aied
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.67-80
    • /
    • 2019
  • Strengthening with near surface mounted carbon fibre reinforced polymers (NSM-CFRP) is a strengthening technique that have been used for several decades to increase the load carrying capacity of reinforced concrete members. In Iraq, many concrete buildings and bridges were subjected to a wide range of damage as a result of the last war and many other events. Accordingly, there is a progressive increase in the strengthening of concrete structures, bridges in particular, by using CFRP strengthening techniques. Near-surface mounted carbon fibre polymer has been recently proved as a powerful strengthening technique in which the CFRP strips are sufficiently protected against external environmental conditions especially the high-temperature rates in Iraq. However, this technique has not been examined yet under repeated loading conditions such as traffic loads on bridge girders. The main objective of this research was to investigate the effectiveness of NSM-CFRP strips in reinforced concrete beams under repeated loads. Different parameters such as the number of strips, groove size, and two types of bonding materials (epoxy resin and cement-based adhesive) were considered. Fifteen NSM-CFRP strengthened beams were tested under concentrated monotonic and repeated loadings. Three beams were non-strengthened as reference specimens while the remaining were strengthened with NSM-CFRP strips and divided into three groups. Each group comprises two beams tested under monotonic loads and used as control for those tested under repeated loads in the same group. The experimental results are discussed in terms of load-deflection behavior up to failure, ductility factor, cumulative energy absorption, number of cycles to failure, and the mode of failure. The test results proved that strengthening with NSM-CFRP strips increased both the flexural strength and stiffness of the tested beams. An increase in load carrying capacity was obtained in a range of (1.47 to 4.49) times that for the non-strengthened specimens. Also, the increase in total area of CFRPs showed a slight increase in flexural capacity of (1.02) times the value of the control strengthened one tested under repeated loading. Increasing the total area of CFRP strips resulted in a reduction in ductility factor reached to (0.71) while the cumulative energy absorption increased by (1.22) times the values of the strengthened reference specimens tested under repeated loading. Moreover, the replacement of epoxy resin with cement-based adhesive as a bonding material exhibited higher ductility than specimen with epoxy resin tested under monotonic and repeated loading.

튜브형상 반응소결 탄화규소 부품의 시편크기에 따른 강도평가 유용성 고찰 (Mechanical Strength Values of Reaction-Bonded-Silicon-Carbide Tubes with Different Sample Size)

  • 김성원;이소율;오윤석;이성민;한윤수;신현익;김영석
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.450-456
    • /
    • 2017
  • Reaction-bonded silicon carbide (RBSC) is a SiC-based composite ceramic fabricated by the infiltration of molten silicon into a skeleton of SiC particles and carbon, in order to manufacture a ceramic body with full density. RBSC has been widely used and studied for many years in the SiC field, because of its relatively low processing temperature for fabrication, easy use in forming components with a near-net shape, and high density, compared with other sintering methods for SiC. A radiant tube is one of the most commonly employed ceramics components when using RBSC materials in industrial fields. In this study, the mechanical strengths of commercial RBSC tubes with different sizes are evaluated using 3-point flexural and C-ring tests. The size scaling law is applied to the obtained mechanical strength values for specimens with different sizes. The discrepancy between the flexural and C-ring strengths is also discussed.

굴 패각과 난각을 혼합한 모르타르의 강도 및 내화성능 평가 (Evaluation of Strength and Fire Resistance Performance of Mortar Mixed with Oyster Shell and Egg Shell)

  • 김해나;정의인;김봉주
    • 한국건설순환자원학회논문집
    • /
    • 제11권4호
    • /
    • pp.560-567
    • /
    • 2023
  • 본 연구에서는 달라지는 화재 성상에 대비하기 위한 내화재료 연구의 일환으로 천연 탄산칼슘 재료인 굴 패각과 난각을 각각 잔골재로 치환하여 치환율에 따른 강도 및 내화성능을 평가하여 내화 재료로 사용하기 위한 자료를 제공하고자 하였다. 굴 패각과 난각은 각각 잔골재 대비 10~50 %를 치환하였고, KS 시험방법에 준하여 강도측정 및 간이가열 실험을 진행하였다. OS를 치환한 경우는 ES를 치환한 경우보다 강도가 높게 측정되었지만 이면온도 또한 높게 측정되었다. 이를 통해 폭발성 화재같이 강도성능이 요구되는 곳은 OS를 혼합한 내화보드를 사용하고, 1000 ℃이상의 고온화재 같이 높은 내화성능이 요구되는 곳은 ES를 혼합한 내화보드를 사용하는 등 용도에 맞게 선택할 수 있을 것으로 사료된다.