• Title/Summary/Keyword: High Temperature Dielectric Properties

Search Result 493, Processing Time 0.027 seconds

High Temperature Dielectric Properties of Silicon Nitride Materials (질화규소 재료의 고온 유전물성 평가)

  • Choi, Doo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.114-119
    • /
    • 2007
  • Dielectric properties of quartz glass and $Si_3N_4$ are investigated using the waveguide method from room temperature to $800^{\circ}C$. For the case of dielectric constant, $Si_3N_4$ showed similar increase with quartz glass up to $300^{\circ}C$, but less increase from $300^{\circ}C$ to $800^{\circ}C$. For the case of loss tangent, those showed gradual increase with temperature except of some temperature points. The loss tangent of $Si_3N_4$ and quartz glass increased up to 18.2% and 12.5% respectively. Through these researches, high temperature dielectric properties of silicon nitride materials are characterized.

Dielectric Properties of Orthorhombic Dysprosium Manganites

  • Wang, Wei Tian
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.753-756
    • /
    • 2019
  • Orthorhombic dysprosium manganite DyMnO3 with single phase is synthesized using solid-state reaction technique and the crystal structure and dielectric properties as functions of temperature and frequency are investigated. Thermally activated dielectric relaxations are shown in the temperature dependence of the complex permittivity, and the respective peaks are found to be shifted to higher temperatures as the measuring frequency increases. In Arrhenius plots, activation energies of 0.32 and 0.24 eV for the high- and low-temperature relaxations are observed, respectively. Analysis of the relationship between the real and imaginary parts of the permittivity and the frequencies allows us to explain the dielectric behavior of DyMnO3 ceramics by the universal dielectric response model. A separation of the intrinsic grain and grain boundary properties is achieved using an equivalent circuit model. The dielectric responses of this circuit are discerned by impedance spectroscopy study. The determined grain and grain boundary effects in the orthorhombic DyMnO3 ceramics are responsible for the observed high- and low-temperature relaxations in the dielectric properties.

Improved Temperature Stability in Dielectric Properties of 0.8BaTiO3-(0.2-x)NaNbO3-xBi(Mg1/2Ti1/2)O3 Relaxors

  • Goh, Yumin;Kim, Baek-Hyun;Bae, Hyunjeong;Kwon, Do-Kyun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.178-183
    • /
    • 2016
  • Ferroelectric relaxor ceramics with $BaTiO_3-NaNbO_3-Bi(Mg_{1/2}Ti_{1/2})O_3$ ternary compositions (BT-NN-BMT) have been prepared by sol-gel powder synthesis and consequent bulk ceramic processing. Through the modified chemical approach, fine and single-phase complex perovskite compositions were successfully obtained. Temperature and frequency dependent dielectric properties indicated typical relaxor characteristics of the BT-NN-BMT compositions. The ferroelectric-paraelectric phase transition became diffusive when NN and BMT were added to form BT based solid solutions. BMT additions to the BT-NN solid solutions affected the high temperature dielectric properties, which might be attributable to the compositional inhomogeneity of the complex perovskite and resulting weak dielectric coupling of the Bi-containing polar nanoregions (PNRs). The temperature stability of the dielectric properties was good enough to satisfy the X9R specification. The quasi-linear P-E response and the temperature- stable dielectric properties imply the high potential of this ceramic compound for use in high temperature capacitors.

The Effect of Ion Contribution to the Dielectric Properties of $\beta$-PVDF Thin Film Fabricated by Vapor Deposition Method (진공증착법으로 제조된 $\beta$-PVDF 박막의 유전 특성에 미치는 이온의 영향)

  • 박수홍;김종택;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1007-1013
    • /
    • 1998
  • In this paper, the dielectric properties of fabricated Polyvinylidene fluoride(PVDF, $PVF_2$) thin film with substrate temperature from 30 to at vapor deposition. The dielectric properties of PVDF thin film had been studied in the frequency range from 10Hz to 4MHz at measuring temperature between 20 and $100^{/circ}C$. The anomalous increasing in dielectric constant and dielectric loss at low frequencies and high temperature was described for PVDF thin film containing ion impurities. In particularly, ion mobility of fabricated PVDF thin film at substrate temperature at $30^{/circ}C$ decrease from $2\times10^{-5}\;to\;3.07$\times10^{-7}cm^2/V.s$ On the other hand, ion density increase abruptly from 1.49\times$$10^{13}$ to $1.5\times$10^{16}$cm^{-3}$ In spite of decreasing of ion mobility, dielectric constants and dielectric loss for PVDF thin film increase rapidly with decreasing frequency and high temperature. It was concluded that the dielectric constants and dielectric loss was related to ion density than to ion mobility at low frequency and high temperatures.

  • PDF

The Dielectric Properties of the Wire for Silicon Rubber (전선용 실리콘 고무의 유전특성)

  • Lee, Sung-Ill;Park, Seoung-Ho
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.355-368
    • /
    • 2012
  • This paper, the hardness of the silicone rubber wire for 50, 60 degrees, 70 degrees High Temperature Vulcanizing (HTV) method using specimens were fabricated. In this paper, in order to investigate the dielectric properties of silicone rubber for wire specimens, the temperature range of $30^{\circ}C{\sim}170^{\circ}C$, the frequency range from 100Hz~4.5MHz report surveyed about the frequency and temperature dependent properties.

  • PDF

Dielectric Breakdown Voltage and Dielectric Properties of High Voltage Mutilayer Ceramic Capacitor with C0G Temperature Coefficient Characteristics (C0G 온도계수 특성을 가지는 고압용 적층 칩 캐패시티의 유전 및 내전압 특성)

  • Yoon, Jung-Rag;Woo, Byong-Chul;Chung, Tae-Serk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • High voltage MLCCs with C0G temperature coefficient characteristics could apply DC-DC invertor were investigated for its dielectric properties. Also we manufactured MLCC through various process and studied the characteristics of dielectric break down voltage [BDV] and dielectric property as the variation of thickness in the green sheet and how to pattern the internal electrode. As the thickness of green sheet is increase, the dielectric BDV per unit thickness is decreased. But as the pattern of internal electrodes were floated we could manufacture the high voltage MLCC maintained its dielectric BDV a unit.

Optical Properties of High-k Gate Oxides Obtained by Spectroscopic Ellipsometer (분광 타원계측기를 이용한 고굴절률 게이트 산화막의 광물성 분석)

  • Cho, Yong-Jai;Cho, Hyun-Mo;Lee, Yun-Woo;Nam, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1932-1938
    • /
    • 2003
  • We have applied spectroscopic ellipsometry to investigate $high-{\kappa}$ dielectric thin films and correlate their optical properties with fabrication processes, in particular, with high temperature annealing. The use of high-k dielectrics such as $HfO_{2}$, $Ta_{2}O_{5}$, $TiO_{2}$, and $ZrO_{2}$ as the replacement for $SiO_{2}$ as the gate dielectric in CMOS devices has received much attention recently due to its high dielectric constant. From the characteristics found in the pseudo-dielectric functions or the Tauc-Lorentz dispersions, the optical properties such as optical band gap, polycrystallization, and optical density will be discussed.

  • PDF

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • Lee, Kyoung-Ho;Kim, Yong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with repsect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, $ZnWO_4$ was turned out the suitable LTCC material. $ZnWO_4$ can be sintered up to 98% of full density at $1050^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and $-70ppm/^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, $B_{2}O_{3}$ and $V_{2}O_{5}$ were added to $ZnWO_4$. 40 mol% $B_{2}O_{3}$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to $-7.6ppm/^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of $V_{2}O_{5}$ in $ZnWO_{4}-B_{2}O_{3}$ system enhanced liquid phase sintering. 0.1 wt% $V_{2}O_{5}$ addition to the $0.6ZnWO_{4}-0.4B_{2}O_{3}$ system, reduced the sintering temperature down to $950^{\circ}C$. Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and $-21.6ppm/^{\circ}C$, respectively.

  • PDF

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • 이경호;김용철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, ZnWO$_4$ was turned out the suitable LTCC material. ZnWO$_4$ can be sintered up to 98% of full density at 105$0^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and -70ppm/$^{\circ}C$, respectively In order to modify the dielectric properties and densification temperature, B$_2$O$_3$ and V$_2$O$_{5}$ were added to ZnWO$_4$. 40 mol% B$_2$O$_3$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to -7.6ppm/$^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of V$_2$O$_{5}$ in ZnWO$_4$-B$_2$O$_3$ system enhanced liquid phase sintering. 0.lwt% V$_2$O$_{5}$ addition to the 0.6ZnWO$_4$-0.4B$_2$O$_3$ system, reduced the sintering temperature down to 95$0^{\circ}C$ Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and -21.6ppm/$^{\circ}C$ respectively.ively.

  • PDF

Suppression of Dielectric Loss at High Temperature in (Bi1/2Na1/2)TiO3 Ceramic by Controlling A-site Cation Deficiency and Heat Treatment

  • Lee, Ju-Hyeon;Lee, Geon-Ju;Pham, Thuy-Linh;Lee, Jong-Sook;Jo, Wook
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.7-13
    • /
    • 2020
  • Dielectric capacitors are integral components in electronic devices that protect the electric circuit by providing modulated steady voltage. Explosive growth of the electric automobile market has resulted in an increasing demand for dielectric capacitors that can operate at temperatures as high as 400 ℃. To surpass the operation temperature limit of currently available commercial capacitors that operate in temperatures up to 125 ℃, Bi1/2Na1/2TiO3 (BNT), which has a large temperature-insensitive dielectric response with a maximum dielectric permittivity temperature of 300 ℃, was selected. By introducing an intentional A-site cation deficiency and post-heat treatment, we successfully manage to control the dielectric properties of BNT to use it for high-temperature applications. The key feature of this new BNT is remarkable reduction in dielectric loss (0.36 to 0.018) at high temperature (300 ℃). Structural, dielectric, and electrical properties of this newly developed BNT were systematically investigated to understand the underlying mechanism.