• 제목/요약/키워드: High Stiffness Design

검색결과 830건 처리시간 0.033초

Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction

  • Deng, En-Feng;Zong, Liang;Ding, Yang
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.347-359
    • /
    • 2019
  • Modular construction has been increasingly used for mid-to-high rise buildings attributable to the high construction speed, improved quality and low environmental pollution. The individual and repetitive room-sized module unit is usually fully finished in the factory and installed on-site to constitute an integrated construction. However, there is a lack of design guidance on modular structures. This paper mainly focuses on the evaluation of the initial stiffness of corrugated steel plate shears walls (CSPSWs) in container-like modular construction. A finite element model was firstly developed and verified against the existing cyclic tests. The theoretical formulas predicting the initial stiffness of CSPSWs were then derived. The accuracy of the theoretical formulas was verified by the related numerical and test results. Furthermore, parametric analysis was conducted and the influence of the geometrical parameters on the initial stiffness of CSPSWs was discussed and evaluated in detail. The present study provides practical design formulas and recommendations for CSPSWs in modular construction, which are useful to broaden the application of modular construction in high-rise buildings and seismic area.

럼블 소음 저감을 위한 타이어 강성 설계 방안 연구 (A Study on Tire Stiffness Design to reduce Tire Rumble Noise)

  • 김건호;강영규;김기운
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.298-304
    • /
    • 2012
  • The development of low rolling resistance tire with weight reduction in tire and vehicle may induce high level of tire/road noise, especially the rumble road noise on rough road. In this paper, the design factor for good rumble noise is considered in view of tire and vehicle. For the 3 mid-sized sedans, the rumble noise is very sensitive to the test vehicle. And it is concluded that the tire with high tread part stiffness and low sidewall part stiffness shows best rumble noise performance, and the rumble noise is in trade-off relation with cavity resonance noise. So, it is desirable to select and change proper construction design factors to have good tire/vehicle rumble noise.

  • PDF

정밀 냉간단조 금형설계를 위한 보강링의 영향 (The Effect of Stress Ring for the Design of Precision Cold Forging Die)

  • 허관도;최영;여홍태
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.145-151
    • /
    • 2001
  • The dimensional accuracy of the cold forged part is depended on the elastic characteristics of the die. To increase the stiffness of the prestressed die, the first stress ring of the tungsten carbide alloy (WC) is considered. For the design, Lame's equation is used. Diameter ratios and interferences have been determinated by maximum inner pressure without yielding of materials. The design of the prestressed die has been compared with the conventional one. For the comparison, the FE-analysis using ANSYS has been performed. The results indicate that the prestressed die with the high stiffness can be obtained by the using the high stiffness material as the first stress ring.

  • PDF

고속 회전시 베어링 강성강하를 고려한 주축 유니트의 최적화 (Optimization of Spindle Units Considering the Decrease of Bearing Stiffness at High Speed Revolution)

  • 이찬홍
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.717-723
    • /
    • 2010
  • Radial stiffness of angular contact ball bearings are decreased remarkably at high speed revolution, because the inner and outer ball contact angle with races arc changed under the ball centrifugal forces at high speed. In the past, the optimizations of spindle units were done under the assumption of unchanged bearing stiffness for the whole speed range. But the bearing stiffness is changed and the dimension of optimum spindle is also changed with speed. In the design phase, only one model of many optimum spindle models with speed should be selected. As optimization criterion, the area of transfer function at spindle nose is proposed to estimate simply and accurately improvement of dynamic characteristics in spindle units. Finally, according to many analyses of diverse spindle models with decreased bearing stiffness, the spindle with shorter bearing span is better than longer bearing span from the viewpoint of dynamic characteristics.

Hertz 접촉이론을 이용한 사이클로이드 감속기의 비틀림 강성해석 (Torsional Stiffness Analysis of a Cycloid Reducer using Hertz Contact Theory)

  • 이상엽;박제승;안형준;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.816-821
    • /
    • 2005
  • The cycloid reducer has very high efficiency, high ratios, high stiffness and small size, in comparison with a conventional gear mechanism, which makes it an attractive candidate for limited space and precision application such as industrial robot. There are several publications on analysis and design of the cycloid reducer, however, it was assumed that the contact stiffness of pin rollers and cycloid disk is constant regardless of their contact geometry. Moreover, the torsional stiffness of the cycloid reducer couldn't be calculated due to the assumption. In this paper, we present a new procedure of calculating torsional stiffness of the cycloid reducer using Hertz contact theory. First, conventional force analysis of the cycloid reducer is briefly reviewed. Then, iterative numerical calculation procedure of the contact stiffness is proposed based on the Hertz contact theory where the contact stiffness depends on the contact force. In addition, total torsional stiffness of the cycloid reducer is estimated considering its rolling element bearing stiffness. The torsional stiffness of the cycloid reducer is dominated by the rolling element bearing stiffness since the contact stiffness of the cycloid disk is too large.

  • PDF

웨이브 와셔 스프링의 강성치에 관한 연구 (A Study on the Stiffness of Wave Washer Spring)

  • 이수종;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.74-81
    • /
    • 1996
  • The wave washer springs are widely used in non-return valves of fluid, especially in air check valves to confirm the rapid shut-off of valve propers. The stiffness of wave washer springs used in suction and exhaust valves of reciprocating air compressor play an important role on efficiency of the compressor. If the stiffness of the spring is too high, the pressure differences necessary to open the valves become high and the volumetric efficiency of cylinder decreasse. If the stiffness of the spring too low, the valve can not be closed rapidly and the inverse flow of air can take place. So, the optimum stiffness of valve spring is very important and it will be very helpful that the stiffness of wave washer springs to be used in suction and exhaust valves can be calculated in design stage of air compressor. In this paper the formula for calculating the spring constant of wave washer spring is introduced using bending and torsion theory of frames. The experiments are also carried out to measure the spring constants of several samples. It is proven that the calculated spring constants of wave washer springs are coincided well with measured values and that the formula presented in this paper for calculating the spring constants of wave washer spring is very useful for design of valves used in reciprocating air compressor.

  • PDF

40,000rpm 고속 주축의 정·동특성 향상을 위한 베어링 위치 선정 (Selection of Bearing Position for Improving Static and Dynamic Stiffness of 40,000rpm High-speed Spindle)

  • 임정숙;정원지;이춘만
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.10-17
    • /
    • 2009
  • Spindle design is very important for the improvement of the competitive power in production cost of high quality machine tools. The important factor in spindle design is not only to improve the natural frequency of spindle but also to reduce displacement of spindle end. In this paper, parameters those influence on static and dynamic stiffness of high-speed spindle have selected form preceding studies. And those selected parameters are applied to Taguchi Method. To perform FEM analysis, bearing conditions are selected with optimized condition. To know how to improve static and dynamic stiffness of machine tool spindle, natural frequency and displacement of spindle end are obtained by FEM analysis. The Taguchi Method was used to draw optimized condition of bearing position and it's stiffness. From these results, amplitude of vibration is enough good less than $3{\mu}m$ pk-pk of the spindle of 40,000rpm manufactured in this work by the optimal design.

  • PDF

탄소섬유 복합재료-금속 하이브리드 팬터그래프 상부암 설계 (Design of CFRP-Metal Hybrid Pantograph Upper-arm)

  • 전승우;한민구;장승환;조용현;박철민
    • Composites Research
    • /
    • 제28권5호
    • /
    • pp.327-332
    • /
    • 2015
  • 본 연구에서는 고속철도 경량화를 위해 금속-탄소섬유 복합재료 하이브리드 팬터그래프에 대한 파라메트릭 연구를 수행하였다. 강철로 구성된 기존 팬터그래프의 고강성 및 경량화를 구현하기 위하여 금속 상부암의 내부와 외부를 적절한 두께로 가공하고 그 후 복합재료를 적층한 금속-탄소섬유복합재료 하이브리드 상부암을 설계하였다. 하이브리드 상부암의 구조강성과 질량 등을 고려하여 적절한 금속을 강철과 알루미늄으로 결정하였다. 각 설계 파라메터의 변화에 따른 구조의 강성 변화를 확인하기 위해 유한요소해석을 수행하였으며, 그 결과를 팬터그래프 CX-PG 모델에 접목시켜 실제 수직하중에 따른 강성과 질량 변화율을 도출하였다. 이러한 결과로부터 고강성, 경량화 팬토그래프 설계를 위한 적절한 형상조건을 제안하였다.

중량 수정계수를 고려한 변위조절설계법 개발 (Development of Drift Design Methods with Weight Modification Factors)

  • 서지현;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.161-168
    • /
    • 2003
  • In the drift design of high-rise buildings, once the geometry and dimensions of a structure are predetermined, engineer's remaining work is determination of the member size to satisfy the strength and the stiffness requirements. For the case of highrise buildings, designs are determined by the stiffness requirements at the final stage of structural design. Thus, engineers try to find a minimum weight design with maximum lateral stiffness. However, there is no guideline for engineers on the required weight of structures per unit area to satisfy the stiffness requirements. In this study, drift design method considering weight modification factors are presented and applied to a 20-story structure. The proposed drift design method considering weight modification factors may give the guideline for engineers on the amount of structural weight to attain target displacement.

  • PDF

기계가공작업을 위한 강성이 큰 2단 평행구조 로보트 암 설계 (Design of a High Stiffness Machining Robot Arm with Double Parallel Mechanism)

  • 이민기
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.22-37
    • /
    • 1995
  • Industrial robot has played a central role in the production automation such as welding, assembling, and painting. There has been, however, little effort to the application of robots in machining work(grinding, cutting, milling, etc.) which is typical 3D work. The machining automation requires a high stiffness robot arm to reduce deformation and vibration. Conventional articulated robots have serially connecting links from the base to the gripper. So, they have very weak structure for he machining work. Stewart Platform is a typical parallel robotic mechanism with a very high stiffness but it has a small work space and a large installation space. This research proposes a new machining robot arm with a double parallel mechanism. It is composed of two platforms and a central axis. The central axis will connect the motions between the first and the second platforms. Therefore, the robot has a large range of work space as well as a high stiffness. This paper will introduce the machining work using the robot and design the proposed robot arm.