• Title/Summary/Keyword: High Speed Trains

Search Result 536, Processing Time 0.026 seconds

A Methodology Study for Estimating the Benefits of Tilting Train Deployment (틸팅열차 투입에 따른 추정가능한 편익계상 연구)

  • Lee, Jin-Sun;Kim, Kyoung-Tae;Eom, Jin-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.700-706
    • /
    • 2009
  • Unlike high-speed KTX trains and dual track railways, most single-track railways are not popular among passengers because of long travel hours. As a solution to the problem, tilting trains will be deployed along the conventional line. Tilting train has a mechanism that enables increased speed on regular and curved railway tracks. As a train rounds a curve at speed, objects inside the train experience centrifugal force. This can cause packages to slide about or seated passengers to feel squashed by the outboard armrest due to its centripetal force, and standing passengers to lose their balance. Tilting trains possess a top speed of up to 180 km per hour as opposed to the previous 140 km per hour, so allow the train to pass curve at higher speed without affecting passenger comfort. This paper describes the methodology study to estimate the benefits, especially on the extra benefits in case of tilting actuation.

Running Monitoring by the Noise and Vibration Measurement near the Wheelset of the High-Speed Trains : A Preliminary Research (고속철도차량 윤축부근의 소음과 진동 측정을 통한 주행중 감시의 기초연구)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1454-1462
    • /
    • 2008
  • This paper is focused on the analysis of the noise and vibration measured near the wheelset of the high-speed trains using a time-varying frequency transform as a preliminary research of running monitoring. Due to the non-stationary characteristics, it is necessary to examine noise and vibration of the train with time-varying frequency transforms. In this paper, the short-time Fourier transform method is utilized - the stored data is localized by modulating with a window function, and Fourier transform is taken to each localized data. For the examination, the non-stationary noise and vibration of the high-speed train's wheelset are measured by using some microphones and accelerometers, and those signals are stored in a on-board data acquisition system. The non-stationary random signal analyses with the short-time Fourier transform are performed, and the result are classified as follows; auto-spectral density, cross-spectral density, frequency response, and coherence functions. From those functions, it is possible to observe the frequency characteristics of sleepers, switchers, tunnels, and steel bridges. Also, some distinct peaks, which are not dependent upon the train's speed, are identified from the results.

  • PDF

A Study on Lateral Vibration Control Method of High-speed Train (고속열차의 횡진동 제어 특성 연구)

  • Kim, Sang-Soo;Kim, Ki-Hwan;Park, Choon-Soo;Mok, Jin-Yong;Choi, Sung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.969-974
    • /
    • 2008
  • As the railway becomes higher, the reliable stability and riding comfort of higher railway are required. To improve the riding comfort of high-speed trains, it is very helpful to use active suspension system for railway. In Japan, the high-speed train, Shinkansen has adopted semi-active suspension system and now it is running in the main trunk. In this paper, the authors introduce several technical trends of vibration control methods of Japanese Shinkansen. And the installation of semi-active suspension to HSR 350x and the test result of test run on the Kyoung-Bu high speed ling are also explained. After development of HSR 350x, new R&D national project of high speed train is progressed by Ministry of Land, Transport, and Maritime Affairs. This project is the development of Electric Multiple Unit of high speed train with 400km/h of maximum test speed. These result would be helpful to progress next generation high speed project.

  • PDF

Conceptual Design of Braking System in High-Speed Train (고속전철 제동장천 개념설계에 관한 연구)

  • Kang, Do-Hyun;Kim, Yong-Joo;Kwak, Soo-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.342-345
    • /
    • 1997
  • To achieve adequate brake performance in high-speed trains the brake system should : ${\bullet}$ offer high reliability and high availability, ${\bullet}$ permit deceleration of the train with as little wear as possible, and ${\bullet}$ display good control characteristics with, if possible, infinitely variable control of the braking effort. For these reasons, high-speed train is to be equipped with three different and largely independent brake system : ${\bullet}$ a regenerative brake with regenerative feedback in the driven cars, ${\bullet}$ a linear eddy-current brake in the nondriven cars and ${\bullet}$ a pneumatic disc brake in all cars. This paper describes the conceptual design of braking system for Korea High Speed Train with the maximum speed of 350km/h

  • PDF

Design of Wireless Power Transmission Antennas for Railway High-Speed Transponder System (철도교통용 고속 트랜스폰더 시스템 무선전력전송 안테나 설계)

  • Lee, Jae-Ho;Park, Sungsoo;Kim, Seong Jin;Ahn, IL Yeup
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.602-611
    • /
    • 2017
  • In railway systems, the exchange of information between running trains and wayside equipment is a very important role in various applications such as position detection and train control. Track circuits have been used as the medium for information transmission between trains and wayside. However, track circuits must be installed continuously along the track on the ground, resulting in an inevitable increase in installation and maintenance costs. One of the most promising solutions to reduce these costs is to mix continuous information transmission (via wireless communication) and discontinuous information transmission (via transponder). In this study, we designed antennas of railway high-speed transponder readers and tags for wireless power transmission, which can be used to transmit information from ground to high-speed trains with a maximum speed of 400km/h. We also verified system performance through computational simulation and prototyping.

Characteristic Analysis of a Linear Induction Motor for 200-km/h Maglev

  • Jeong, Jae-Hoon;Lim, Jae-Won;Park, Do-Young;Choi, Jang-Young;Jang, Seok-Myeong
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • As a result of the current population concentrations in urban centers, demand for intercity transportation is increasing rapidly. Railway transportation is becoming popular as an intercity transportation because of its timely service, travel speeds and transport efficiency. Among the many railway systems, the innovative and environmentally friendly maglev system has been rated very highly as the next-generation intercity railway system. Linear induction motors are widely used for the propulsion of maglev trains because of their light weight and low construction costs. The urban maglev that was recently completed in Incheon airport site employs a 110km/h class linear induction motor. However, this system was designed to meet requirements for inner-city operations and is not suitable as an intercity transportation system, which requires medium to high speeds. Therefore, this study deals with the characteristics and designs of linear induction motors used for the propulsion of maglev trains that can be used as intercity trains. Rail car specifications for high-speed trains have been presented, and the characteristics of linear induction motors that can be used for the propulsion of these trains have been derived using the finite element method (FEM).

An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort

  • Ni, Y.Q.;Ye, S.Q.;Song, S.D.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.53-74
    • /
    • 2016
  • This paper presents an experimental study on constructing a tunable secondary suspension for high-speed trains using magneto-rheological fluid dampers (referred to as MR dampers hereafter), in the interest of improving lateral ride comfort. Two types of MR dampers (type-A and type-B) with different control ranges are designed and fabricated. The developed dampers are incorporated into a secondary suspension of a full-scale high-speed train carriage for rolling-vibration tests. The integrated rail vehicle runs at a series of speeds from 40 to 380 km/h and with different current inputs to the MR dampers. The dynamic performance of the two suspension systems and the ride comfort rating of the rail vehicle are evaluated using the accelerations measured during the tests. In this way, the effectiveness of the developed MR dampers for attenuating vibration is assessed. The type-A MR dampers function like a stiffness component, rather than an energy dissipative device, during the tests with different running speeds. While, the type-B MR dampers exhibit significant damping and high current input to the dampers may adversely affect the ride comfort. As part of an ongoing investigation on devising an effective MR secondary suspension for lateral vibration suppression, this preliminary study provides an insight into dynamic behavior of high-speed train secondary suspensions and unique full-scale experimental data for optimal design of MR dampers suitable for high-speed rail applications.

The Standardization of Damage Types of Track Components on High Speed Railway (고속철도 궤도구성품의 손상유형 표준화)

  • Oh, Seoung-Jae;Sung, Deok-Yong;Kim, Jun-Hyung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1056-1064
    • /
    • 2008
  • It is estimated that the running of locally-developed next generation High Speed Trains with maximum speed of 400km/h will help to deteriorate track components. It was presented rail defect coding system in UIC 712R includes the definitions of damage types of rail, maintenance procedures, and etc to detect and maintain. It is necessary to make a track maintenance manual determining track maintenance periods using the standardization of damage types of track components such as: sleeper, fastener, elastic pad. In this paper, the damage types of high speed track components are investigated by referring domestic and foreign literatures. And then the damage types of rail given in UIC 712R is reclassified more particularly and classified damage types of track components using internal high speed railway. In conclusion, this paper suggests standardization for damage types of track components on internal high speed railway.

  • PDF

An Experimental Study on the Aerodynamic Characteristics of the Robust Optimized Shape of Pantograph Panhead (팬터그래프 팬헤드 강건최적형상에 대한 공기역학적 특성에 관한 실험적 연구)

  • Rho, Joo-Hyun;Kwak, Min-Ho;Park, Hoon-Il;Lee, Young-Bin;Lee, Dong-Ho;Cho, Hwan-Kee
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2224-2229
    • /
    • 2008
  • High-Speed train has been developed and it becomes faster and environmental friendly. As trains run faster, Noise of trains is generated mainly by aerodynamic disturbance. Pantograph, both ends of trains, and gaps of coaches which are thought to be aerodynamic noise's factors are primarily studied. Pantograph is a similarly shaped metal framework on the roof of an electric high speed train, transmitting current from an overhead electric catenary wire. Panhead which contacts electric wires directly looks like a bluff strut, goes through flows, is sensitive to external disturbances and is one of the most important factors which decide whole vehicles' driving ability. In this study, aerodynamically robust optimized pantograph panhead shape is designed and then evaluated through subsonic wind tunnel test. To compare these with existing panhead rectangular shapes or circular cylinder shapes, By visualizing strong vortex flow patterns which are main noise sources, characteristics are compared and analyzed

  • PDF

Ride Comfort Analysis of High-Speed Train with Flexible Car Bodies (차체의 유연성을 고려한 고속철도 차량 승차감 해석)

  • Shin, Bum-Sik;Choi, Yeon-Sun;Koo, Ja-Choon;Lee, Sang-Won;Lee, Sung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.341-346
    • /
    • 2011
  • In the development of high-speed trains, ride comfort is an important factor that determines the quality of the train. In this study, the ride comforts of high-speed trains with rigid and flexible car bodies were evaluated. The rail irregularity is used as an exciting source of the car-body bounce motion. The complex extruded structures of the car-body are modeled as shell structures using the calculated equivalent stiffness of the flexible model. The numerical results show that the ride of the rigid-body model improves as the speed increases, which is unreasonable. In contrast, the relationship between ride comfort and speed in the case of flexible-body model is reasonable. Thus, it is confirmed that the flexibility of the car body needs to be taken into consideration while fabricating a high-speed train.