• Title/Summary/Keyword: High Speed Motor

Search Result 1,895, Processing Time 0.038 seconds

High Power Factor Control of High-speed Single-phase BLDC Motor (초고속 단상 BLDC 전동기의 고역률 전력 제어 방법)

  • Lee, Wook-Jin;Jung, Bumun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.144-149
    • /
    • 2016
  • This paper presents a power control method of high-speed single-phase BLDC motor. Most electric appliances require a power factor corrector (PFC) to mitigate grid current harmonics. However, the reactive components and power semiconductors in the PFC increase system cost and dimension. In this paper, a new motor drive system for a high-speed single-phase BLDC motor is proposed, which can decrease grid current harmonics without PFC by directly manipulating motor power and eliminating bulky electrolytic dc-link capacitor. Given that the proposed motor power control method does not require motor current controller, no current sensor is necessary. Moreover, the proposed algorithms can be easily implemented using a low-cost micro-controller. The effectiveness of the proposed power control method is verified by experiments.

Design of Neural Network Controllers for High Speed Induction Motor Drives (초고속 유도전동기 구동을 위한 신경회로망 제어기 설계)

  • 김윤호;이병순;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 1997
  • In this paper, a high speed motor drive system using an indirect adaptive neural network controller is proposed. In the variable high speed motor drives, the speed response can be deteriorated by long settling time and high overshoot. To obtain a good dynamical performance, an adaptive feedforward controller consisted of Neural Network Controller(NNC) and Neural Network Emulator(NNE) is applied. The NNE is used to identify the parameters and characteristics of high speed motor. To train the controller, the weights are dynamically adjusted using the back propagation algorithm. Computer simulation and implementation of the proposed system is described.

  • PDF

Structural Characteristics Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors (냉장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 구조 특성 해석)

  • 김석일;조재완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.326-333
    • /
    • 2004
  • This paper presents the structural characteristics analysis of a high-speed horizontal machining center with spindle speed of 50, 000rpm and feedrate of 120m/min. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motor and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guide. The structural analysis model of the high-speed horizontal machining center is constructed by the finite element method, and the validity of structural design is estimated based on the structural deformation of the high-speed horizontal machining center and spindle nose caused by the gravity and inertia forces.

  • PDF

PWM Control of Hydraulic Motor Systems Using High Speed Solenoid Valves (고속응답 전자밸브에 의한 유압 모터계의 PWM 제어)

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.387-392
    • /
    • 1999
  • The micro electronic control technology with developing microcomputers make great contribution to electrohydraulic control systems. The electrohydraulic pulse control simplifies in conjunction with power electronic amplifier and high speed operated solenoid valves. It is necessary to valves to convert electronic pulse signal to hydraulic pulse flow as fast as possible. This study deals with the speed control of an oil hydraulic motor operated by two way high speed solenoid valves. The valves acts as converters of electronic-pulse signals to hydraulic power. By constructing systems in which a hydraulic motor is operated by two solenoid valves, the pulse with modulation method (PWM) has adopted as the speed control of hydraulic motor systems. The static and dynamic characteristics of the systems are investigated by the experiment. It is clarify that a hydraulic motor operated PWM show good performance as a control component, achieving accurate velocity control.

  • PDF

Speed-Sensorless Speed Control of DC Servo Motor Using a High Gain Observer (고이득 관측기를 이용한 직류서보전동기의 속도 센서리스 속도제어)

  • Him, Sang-Hoon;Kim, Myung-Joon;Yun, Kwang-Ho;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2203-2205
    • /
    • 2003
  • In this thesis, it is a purpose to carry out speed control of DC servo motor without using encoder and the resolver which are speed sensor of DC servo motor and it should use estimate algorithm or observer and must assume a speed in order to control speed sensorless. Therefore, high gain observer was designed to estimate rotor speed of DC servo motor and it carries out speed control from the feedback of the speed that assumed done in the thesis. Also, implementation used easy PI controller in speed-controller of DC motor though it was simple. It is compared estimate performance of Luenberger and high gain observer in a way of computer simulation in order to verify performance of the high gain observer which proposed in this thesis, and proved excellency of the high gain observer. And the thesis proved that smooth speed sensorless control of DC servo motor was implemented in invariable driving.

  • PDF

Thermal Characteristics and Frequency Analysis of a High Speed Spindle for Small Tapping Center (소형 태핑센터 주축의 열특성 및 주파수 분석)

  • Choi, Dae-Bong;Kim, Soo-Tae;Ro, Seung-Kook;Cho, Hyun-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2012
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used for the high speed machine tools. The important problem in high speed spindle is to minimize the thermal effect by motor and bearing and frequency effect. This paper presents the thermal characteristic analysis and frequency experiment for a high speed spindle considering the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil cooling jacket and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. To find out the characteristic of vibration, the high speed spindle is excited in operational range. This result can be applied to the design and manufacture of a high speed tapping spindle.

Thermal Analysis of High Speed Induction Motor by Using Lumped-Circuit Parameters

  • Han, Pil-Wan;Choi, Jae-Hak;Kim, Dong-Jun;Chun, Yon-Do;Bang, Deok-Je
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2040-2045
    • /
    • 2015
  • This paper deals with the electromagnetic and thermal analysis of high speed induction motor. The induction motor is analyzed by time-varying magnetic finite element method and its thermal analysis is carried out by using analytical lumped-circuit method. Analysis results are compared with the experiment of 29kW high speed motor prototype at 12,000rpm.

A Study on the Thermal Characteristics of a High Speed Spindle according to the Cooling Existence of Rear Part and the Cooling Conditions (고속주축의 냉각조건과 후반부 냉각 유무에 따른 열특성 연구)

  • Choi, Dae-Bong;Kim, Soo-Tae;Lee, Seog-Jun;Kim, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.50-55
    • /
    • 2012
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and bearing. This paper presents the thermal characteristic analysis for a high speed spindle with and without cooling at the rear part, considering the viscosity and the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil jacket cooling and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. This result can be applied to the design and manufacture of a high speed motor spindle.

Thermal Characteristic Analysis of a High-Speed HMC with Linear Motor and Magnetic Bearing (리니어모터와 자기베어링을 채용한 초고속 HMC의 열특성 해석)

  • Kim, S. I.;Lee, W. J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.11-15
    • /
    • 2002
  • This paper presents the thermal characteristic analysis of a high-speed HMC with spindle speed of 50,000rpm. The spindle is supported by two radial and axial magnetic bearings. and the built-in motor is located between the axial and rear radial magnetic bearings. The X-axis and Y-axis feeding systems are composed of linear motor and linear motion guides, and the Z-axis feeding system is composed of servo-motor, ballscrew and linear motion guide. The thermal analysis model of high-speed HMC is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on the temperature distribution and thermal deformation under the conditions related to the heat generation of built-in motor, magnetic bearings, linear motors, servo-motor, ballscrew, and so on.

  • PDF

A Controller Design for Speed Control of the Switched Reluctance Motor in the Train Propulsion System (열차추진시스템에서 Switched Reluctance Motor의 속도제어를 위한 제어기 설계)

  • Kim, Sung-Soo;Kim, Min-Seok;Lee, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.138-143
    • /
    • 2011
  • Electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending energy between motor blocks and traction motors. Currently, switched reluctance motors have been studied because the efficient is higher than induction motors. In this paper, model of the switched reluctance motor is presented and the PID controller is applied to the model for the speed control by using Simulink. Asymmetry converter is used for real-time control and system performance is demonstrated by simulating the speed of switched reluctance motor including PID controller.