• 제목/요약/키워드: High Speed Machining Center

검색결과 113건 처리시간 0.03초

스캐너를 이용한 AZ31 극박판재와 AZ91D 다이캐스팅 프레임의 고속레이저용접 (Fast laser welding with scanner on the joint between AZ31 thin sheet and die-casted AZ91D frame for smart phone application)

  • 이목영;서민홍
    • 한국레이저가공학회지
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2015
  • High welding speed and narrow weld seam are favorable for welding of magnesium alloy. Magnesium alloy is recommended for the smart frame because it has several advantages such as low density, high thermal conductivity, EMI shielding capability and good cast ability. This study is for the assembly welding of the magnesium smart frame with high productivity, good performance and low cost. The window for battery on AZ91D frame produced by die-casting was prepared by CNC machining. Corresponding AZ31 blank of 0.2mm thickness was prepared by die-blanking cut. All system set was fixed at the stationary bed but the laser beam was manipulated by scanner up-to 1,000mm/s speed. The weld joint between AZ31 sheet and AZ91D frame was welded by fiber laser on 850~1,000W output power. The joint showed penetration enough but some humping bead. The distortion by the weld heat was almost free because of the quick dissipation of the heat by small beam size and fast welding. Consequently, the thinner magnesium foil was assembled successfully to the magnesium frame of mobile phone.

단결정 다이아몬드 공구에 의한 비철금속과 폴리머 소재의 마이크로 트렌치 가공특성 비교 (Comparison of Micro Trench Machining Characteristics with Nonferrous Metal and Polymer using Single Diamond Cutting Tool)

  • 최환진;전은채;최두선;제태진;강명창
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.355-358
    • /
    • 2013
  • Micro trench structures are applied in gratings, security films, wave guides, and micro fluidics. These micro trench structures have commonly been fabricated by micro electro mechanical system (MEMS) process. However, if the micro trench structures are machined using a diamond tool on large area plate, the resulting process is the most effective manufacturing method for products with high quality surfaces and outstanding optical characteristics. A nonferrous metal has been used as a workpiece; recently, and hybrid materials, including polymer materials, have been applied to mold for display fields. Thus, the machining characteristics of polymer materials should be analyzed. In this study, machining characteristics were compared between nonferrous metals and polymer materials using single crystal diamond (SCD) tools; the use of such materials is increasing in machining applications. The experiment was conducted using a square type diamond tool and a shaper machine tool with cutting depths of 2, 4, 6 and 10 ${\mu}m$ and a cutting speed of 200 mm/s. The machined surfaces, chip, and cutting force were compared through the experiment.

고속 HMC 이송계의 운동 특성 평가 (Performance Assessment of Linear Motor for High Speed Machining Center)

  • 홍원표;강은구;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.158-161
    • /
    • 2003
  • Recently, the evolution in production techniques (e.g. high-speed milling), the complex shapes involved in modem production design, and the ever increasing pressure for higher productivity demand a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. And also machine tools of multi functional and minimized parts are increasingly required as demand of higher accurate in some fields such as electronic and optical components etc. The accuracy and the productivity of machined parts are natural to depend on the linear system of machine tools. The complex workpiece surfaces encountered in present-day products and generated by CAD systems are to be transformed into tool paths for machine tools. The more complex these tool paths and the higher the speed requirements, the higher the acceleration requirements are needed to the machine tool axes and the motion control system, and the more difficult it is to meet the requirements. The traditional indirect drive design for high speed machine tools, which consists of a rotary motor with a ball-screw transmission to the slide, is limited in speed, acceleration, and accuracy. The direct drive design of machine tool axes. which is based on linear motors and which recently appeared on the market. is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, no mechanical limitations on acceleration and velocity and mechanical simplicity. Therefore performance tests were carried out to machine tool axes based on linear motor. Especially, dynamic characteristics were investigated through circular test.

  • PDF

CMOS공정 기반의 저전력 NO 마이크로가스센서의 제작 (Fabrication of low power NO micro gas senor by using CMOS compatible process)

  • 신한재;송갑득;이홍진;홍영호;이덕동
    • 센서학회지
    • /
    • 제17권1호
    • /
    • pp.35-40
    • /
    • 2008
  • Low power bridge type micro gas sensors were fabricated by micro machining technology with TMAH (Tetra Methyl Ammonium Hydroxide) solution. The sensing devices with different heater materials such as metal and poly-silicon were obtained using CMOS (Complementary Metal Oxide Semiconductor) compatible process. The tellurium films as a sensing layer were deposited on the micro machined substrate using shadow silicon mask. The low power micro gas sensors showed high sensitivity to NO with high speed. The pure tellurium film used micro gas sensor showed good sensitivity than transition metal (Pt, Ti) used tellurium film.

공작기계 주축용 2단 치차 감속기 해석 (Analysis of 2 step gear reducer in machine tool spindle)

  • 장영도;장희락;여진욱
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 추계산학기술 심포지엄 및 학술대회 발표논문집
    • /
    • pp.99-103
    • /
    • 2001
  • Though the research and the development in the field of machine tool was focused on high precision and high speed machine these days, traditional gear reduction device has been used to increase the cutting force which was transmitted from power source, motor In this study, analysis of 2 step gear reducer used in machining center spindle was carried out by using APM WinMachine which is commercial software for the analysis of machine element and system. For the analysis of this device, first of all, the analysis of power source and the transmitting of it were carried out. Then, machine elements like gear, shaft, bearing, and the forth, was analyzed in the view point of life time, static strength, stiffness, fatigue failure, etc. Consequently, we can estimate them and introduce new idea of the design modification of reduction device by this study.

퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링 (Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy)

  • 이재하;이진현;양승한
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2589-2596
    • /
    • 2000
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model, etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcomes limitation of accuracy in the linear regression model or the engineering judgment model. It shows that the fuzzy model has more better performance than linear regression model, though it has less number of thermal variables than the other. The fuzzy model does not need to have complex procedure such like multi-regression and to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Also, the fuzzy model can be applied to any machine, but it delivers greater accuracy and robustness.

퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링 (Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy)

  • 이재하;양승한
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.75-80
    • /
    • 1999
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcome limitation of accuracy in the linear regression model or the engineering judgment model. And this model is compared with the engineering judgment model. It is not necessary complex process such like multi-regression analysis of the engineering judgment model. A fuzzy model does not need to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Like a regression model, this model can be applied to any machine, but it delivers greater accuracy and robustness.

  • PDF

동적 벌점함수 유전 알고리즘과 다단계 설계방법을 이용한 공작기계 구조물의 설계 최적화 (Multi-step design optimization of a high speed machine tool structure using a genetic algorithm with dynamic penalty)

  • 최영휴;배병태;김태형;박보선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.108-113
    • /
    • 2002
  • This paper presents a multi-step structural design optimization method fur machine tool structures using a genetic algorithm with dynamic penalty. The first step is a sectional topology optimization, which is to determine the best sectional construction that minimize the structural weight and the compliance responses subjected to some constraints. The second step is a static design optimization, in which the weight and the static compliance response are minimized under some dimensional and safety constraints. The third step is a dynamic design optimization, where the weight static compliance, and dynamic compliance of the structure are minimized under the same constraints. The proposed design method was examined on the 10-bar truss problem of topology and sizing optimization. And the results showed that our solution is better than or just about the same as the best one of the previous researches. Furthermore, we applied this method to the topology and sizing optimization of a crossbeam slider for a high-speed machining center. The topology optimization result gives the best desirable cross-section shape whose weight was reduced by 38.8% than the original configuration. The subsequent static and dynamic design optimization reduced the weight, static and dynamic compliances by 5.7 %, 2.1% and 19.1% respectively from the topology-optimized model. The examples demonstrated the feasibility of the suggested design optimization method.

  • PDF

Multi Layer 다이아몬드 전착 공구의 가공특성에 관한 연구 (Processing Characteristics of Multi Layer Diamond Electrodeposition Tool)

  • 차승환;양동호;이상협;이종찬
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.22-28
    • /
    • 2022
  • In the semiconductor and display component industries, the use of ceramic materials, which are high-strength materials, is increasing for ensuring durability and wear resistance. Among them, alumina materials are used increasingly. Alumina materials are extremely difficult to process because of their high strength; as such, research and development in the area of mineral material processing is being promoted actively to improve their processing. In this study, the processability of an electrodeposition tool is investigated using the electrodeposition method to smoothly process alumina materials. Furthermore, processing is conducted under various processing conditions, such as spindle speed, feed speed, and depth of cut. In addition, the processing characteristics of the workpiece are analyzed based on the tooling.

변곡점에서 공작기계의 윤곽오차 (Contouring Error of a Machine Tool at Inflection Points)

  • 안일혁;김성수;민경석;최우천;홍대희
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.166-170
    • /
    • 2003
  • Contouring errors are important especially for high speed and precision machining. In this study, contouring errors along contours having inflection points are studied. When a table of a machine tool moves along a circular path, acceleration acts toward the center of the circle. Thus, at inflection points, acceleration as well as inertia force changes its direction abruptly. The effect of inertia force on the contouring error is investigated in this study. It is found that the contouring error at an inflection point is proportional to the acceleration. This result can be useful in determining contouring errors along general paths.