• 제목/요약/키워드: High Resolution Radar

검색결과 327건 처리시간 0.029초

수평 시추공간 지오레이다 토모그래피를 이용한 터널 굴착에 의한 암반 물성 변화의 고찰 (Monitoring Rock Physical Property Changes due to Excavations Using Horizontal Crosshole Georadar Tomography)

  • 정연문;이명성;송명준;우익
    • 터널과지하공간
    • /
    • 제6권4호
    • /
    • pp.342-347
    • /
    • 1996
  • The changes of electromagnetic wave velocity in rock were monitored to investigate rock behaviors due to the drill & blasting excavations through georadar tomography during the construction of the underground rock laboratory (5 m wide, 6 m high, and 140 m long) at Mabuk-Ri, Goosung-Myun, Yongin-Si, Kyunggi-Do. Two horizontal boreholes spaced 1.4 m apart were drilled parallel to the test tunnel before excavating it, high-resolution crosshole georadar tomography with about 500 MHz electromagnetic waves was performed at pre-excavation phase (May, 1996) and post-excavation phase (August, 1996). The data were acquired with the combination of 34 sources and 44 receivers with space of 0.3 m. Only 11 continuous receivers were selectively utilized with one fixed source. Sampling interval was 0.4 ns and each trace has 512 samples. The first arrival of each trace was picked manually with a picking software. The total number of rays used in inversion amounted to 34x11 and the size of pixel was determined to be 0.3 m. As an inversion technique, SIRT(Simultaneous Iterative Reconstruction Technique) was applied in this study. The velocity of electromagnetic waves at post-excavation phase decreased as large as 15% in comparison with that at pre-excavation phase, which may be attributed to the creation of micro-cracks in rock due to excavations and saturation with groundwater. Small amount of borehole deviation made a critical effect in radar tomography. Totally different tomograms were created after borehole deviation corrections.

  • PDF

Floods and Flood Warning in New Zealand

  • Doyle, Martin
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.20-25
    • /
    • 2012
  • New Zealand suffers from regular floods, these being the most common source of insurance claims for damage from natural hazard events in the country. This paper describes the origin and distribution of the largest floods in New Zealand, and describes the systems used to monitor and predict floods. In New Zealand, broad-scale heavy rainfall (and flooding), is the result of warm moist air flowing out from the tropics into the mid-latitudes. There is no monsoon in New Zealand. The terrain has a substantial influence on the distribution of rainfall, with the largest annual totals occurring near the South Island's Southern Alps, the highest mountains in the country. The orographic effect here is extreme, with 3km of elevation gained over a 20km distance from the coast. Across New Zealand, short duration high intensity rainfall from thunderstorms also causes flooding in urban areas and small catchments. Forecasts of severe weather are provided by the New Zealand MetService, a Government owned company. MetService uses global weather models and a number of limited-area weather models to provide warnings and data streams of predicted rainfall to local Councils. Flood monitoring, prediction and warning are carried out by 16 local Councils. All Councils collect their own rainfall and river flow data, and a variety of prediction methods are utilized. These range from experienced staff making intuitive decisions based on previous effects of heavy rain, to hydrological models linked to outputs from MetService weather prediction models. No operational hydrological models are linked to weather radar in New Zealand. Councils provide warnings to Civil Defence Emergency Management, and also directly to farmers and other occupiers of flood prone areas. Warnings are distributed by email, text message and automated voice systems. A nation-wide hydrological model is also operated by NIWA, a Government-owned research institute. It is linked to a single high resolution weather model which runs on a super computer. The NIWA model does not provide public forecasts. The rivers with the greatest flood flows are shown, and these are ranked in terms of peak specific discharge. It can be seen that of the largest floods occur on the West Coast of the South Island, and the greatest flows per unit area are also found in this location.

  • PDF

TerraSAR-X를 이용한 조간대 관측 (Investigation of Intertidal Zone using TerraSAR-X)

  • 박정원;이윤경;원중선
    • 대한원격탐사학회지
    • /
    • 제25권4호
    • /
    • pp.383-389
    • /
    • 2009
  • TerraSAR-X자료를 이용하여 고해상 X-밴드 SAR시스템을 이용한 조간대 갯벌 관측에의 적용 가능성을 시험하였다. 연구대상지 역은 강화도 남단과 영종도를 잇는 조간대이며, 단일편파자료와 이중편파자료를 이용하였다. 연구내용은 다음과 같은 세 가지로 분류된다. 첫째, X-밴드 영상에서의 연안의 레이더 반사도 특성 연구 및 waterline 추출 정밀도를 평가하였다. 연안지역의 waterline은 HH 편광자료의 레이더 반사도 특성을 통하여 추출하였을 때 가장 신뢰도가 높았으며, TerraSAR-X 시스템의 짧은 파장과 높은 궤도정밀도로 인하여 정밀한 지리좌표로의 변환이 가능하였다. 연구지역의 조간대 지형 경사도는 평균적으로 수평방향으로 60 m당 20 cm의 고도변화를 가지므로, TerraSAR-X HH 편광자료를 이용한 waterline 추출은 정밀한 조간대 DEM 추출로 응용될 수 있다. 둘째, 이중편파자료의 편파특성을 이용한 조간대 영생식물의 산란특성을 관측하였다. 조간대 수륙경계부에서 잘 관측되는 칠면초와 같은 염생식물은 해수면변화에 따른 조간대의 육지화 모니터링에 좋은 표적이 된다. TerraSAR-X 이중편파자료의 산란특성을 이용한 염생식물 관측결과는 2007년에 현장에서 취득된 실측자료와 비교하여 3 dB 이내의 정밀도로 일치하였다. 셋째, 단일편파자료의 레이더 간섭기법을 이용한 조간대 DEM작성을 시도하였다. 조간대 내에서 육지화가 진행된 지역은 표면에 염생식물이 발달하였음에도 불구하고 높은 간섭긴밀도를 나타내었다. 레이더 간섭기법을 통한 DEM의 제작은 일반적인 조간대에서는 적용이 제한적이며, TanDEM-X의 적용이 필요하다.

고해상도 SAR 위성영상의 스페클 divergence와 객체기반 영상분류를 이용한 주거지역 추출 (Detection of Settlement Areas from Object-Oriented Classification using Speckle Divergence of High-Resolution SAR Image)

  • 송영선
    • 지적과 국토정보
    • /
    • 제47권2호
    • /
    • pp.79-90
    • /
    • 2017
  • 도시지역은 지구상에서 가장 변화가 활발히 일어나는 지역 중의 하나로써, 우리나라에서도 산림지나 녹지, 농경지가 주거지역, 공업지역 등의 주거지역으로 빠르게 변화하고 있다. 이러한 빠른 토지이용의 변화를 모니터링하기 위해서는 신속한 데이터의 취득을 필요로 하게 되고, 위성영상은 이러한 요구의 대안이 될 수 있다. 일반적으로 SAR 위성은 능동적 탐측체계로 영상을 취득하기 때문에 지표면의 거칠기에 따라 영상의 밝기값이 결정되며, 대표적으로 수계영역은 반사강도가 낮아 어둡게 나타나고, 인공구조물이 분포하고 있는 주거지역의 경우 반사강도가 높아 타 지역에 비해 밝기값이 높게 나타난다. 이러한 SAR 영상의 특성을 이용하면 주거지역을 효과적으로 추출할 수 있다. 본 연구에서는 고해상도 X-band SAR 위성인 독일의 TerraSAR-X, 우리나라의 KOMPSAT-5를 이용하여 주거지역의 추출을 수행하였으며, 추출을 위해서 영상분할기법을 통한 객체기반 영상분류를 적용하였다. 영상분할의 정확도를 향상시키기 위해서 스페클 divergence를 먼저 계산하여 주거지역의 반사강도를 조정하였다. 두 위성영상의 정확도 평가를 위해서 추가로 픽셀기반의 K-means 영상분류법을 적용하여 주거지역을 분류하였다. 연구의 결과로써 TerraSAR-X의 객체기반 영상분류법은 약 88.5%, 픽셀기반영상분류법은 75.9%, KOMPSAT-5는 약 87.3%와 74.4%의 overall accuracy를 보였다.

IKONOS와 AIRSAR 영상을 이용한 계층적 토지 피복 분류 (Hierarchical Land Cover Classification using IKONOS and AIRSAR Images)

  • 염준호;이정호;김덕진;김용일
    • 대한원격탐사학회지
    • /
    • 제27권4호
    • /
    • pp.435-444
    • /
    • 2011
  • 고해상도 위성영상의 다중분광자료만을 이용하여 토지 피복도를 제작할 경우, 낮은 분광해상도와 단일 토지 피복 내에 존재하는 불균질성으로 인해 분류 결과의 정확도가 저하되는 문제가 발생한다. 특히 식생 클래스의 경우 단일 토지 피복임에도 불구하고 절감 특성에 따라 해당 영역 안에 산림, 초지, 농업지역 등이 함께 분류되는 문제가 두드러진다. 본 연구에서는 이러한 문제를 개선하기 위해 광학 영상 기반의 사전분류를 수행한 후 식생으로 분류된 영역에 대해 고해상도 위성영상의 다중분광정보와 SAR 영상 산란 정보를 통합하고 식생을 세분류하였다. 사전 분류와 식생분류는 최대우도 감독분류를 통해 수행되었으며 식생 세분류 결과와 사전 분류결과 중 비식생 클래스의 융합을 통해 계층적 분류 방법을 제안하였다. 제안 기법은 SAR 영상이나 GLCM 질감 정보를 영상 전체에 걸쳐 단순 통합한 분류결과뿐만 아니라 GLCM 질감 정보를 식생 지역에 적용한 계층적 분류결과에 비해 높은 정확도를 보였으며 특히 식생과 비식생의 분류 정확도가 모두 높게 나타났다.

복합 위성을 이용한 허베이스피리트 유류오염해역 모니터링 (M/T Herbei Sprit Oil Spill Area Monitoring Using Multiple Satellite Data)

  • 김상우;정희동
    • 해양환경안전학회지
    • /
    • 제15권4호
    • /
    • pp.283-288
    • /
    • 2009
  • 본 연구에서는 고해상도인 아리랑 2호(KOMPSAT-2)와 ENVISAT ASAR(Synthetic Aperture Radar) 마이크로웨이브 위성 영상을 이용한 유류 분포 면적 추정과 저해상도인 해색위성 자료를 이용하여 허베이스피리트호 유류오염 사고 발생 전후의 클로로필 a 농도를 분석하였다. KOMPSAT-2와 ASAR 위성에서 추정된 유출유 확산 분포 면적은 각각 59,456 $m^2$ 과 1,168 $km^2$로 추정되었다. QuickScat 위성관측 바람은 유류오염 사고 전후에 북풍과 북서풍이 우세하였고, 유류오염 사고 당시 바람은 10m/s 이상의 강한 북서풍이 탁월하였다. 태안과 안면도 연안해역의 클로로필 a의 월별 농도는 유류사고 당시인 2007년 12월에 각각 2.9 mg/$m^3$과 2.5 /$m^3$ 이었으나, 그 한 달 후인 2008년 1월에는 각각 6.3 mg/$m^3$과 3.7 mg/$m^3$로 클로로필 a 농도가 현저하게 증가하였다. 또한, 이들 지역에서 콜로로필 a 농도의 단기변화는 유류오염 사고 발생 1-2 주일 후에 그 농도가 감소한 것을 알았다.

  • PDF

KOMPSAT-2 입체영상의 자동 기하 보정 (Automatic Geometric Calibration of KOMPSAT-2 Stereo Pair Data)

  • 오관영;정형섭
    • 대한원격탐사학회지
    • /
    • 제28권2호
    • /
    • pp.191-202
    • /
    • 2012
  • KOMPSAT-2와 같은 고해상 위성영상은 대상영역의 3차원 위치결정을 위하여 RPC(Rational Polynomial Coefficient)가 포함된 자료를 제공한다. 그러나 RPC로 계산된 영상기하는 일정량의 편이(systematic errors)를 지니고 있는 상태이며, 이를 보정하기 위해서는 수 개 이상의 지상기준점(ground control point)이 필요하다. 이에 본 논문에서는 지상기준점 없이 입체영상(stereo pair)과 SRTM(Shuttle Radar Topography Mission) DEM(Digital Elevation Model) 사이의 대응점(tie point)만을 이용하여 자동으로 영상 기하를 보정하는 효과적인 방법을 제안하였다. 이러한 방법은 4가지 단계를 포함 한다: 1) 대응점 추출, 2) 대응점에 대한 지상좌표 결정, 3) SRTM DEM을 이용한 지상좌표의 보정, 4) RPC 보정 모델의 파라미터 결정. 우리는 KOMPSAT-2 입체영상을 이용하여 제안된 방법의 성과를 입증하였다. 검사점(check point)을 통해 계산된 RMSE(Root Mean Square Error)는 X와 Y, Z방향으로 각각 약 3.55 m, 9.70 m, 3.58 m를 나타냈다. 이는 SRTM DEM을 이용하여 RPC가 지닌 편이를 X, Y 및 Z 모든방향에 대하여 10 m이내의 정확도로 자동보정할 수 있다는 것을 의미한다.

낙동강 유역의 연안 해저지하수 유출특성에 관한 연구 (The Characteristics of Submarine Groundwater Discharge in the Coastal Area of Nakdong River Basin)

  • 김대선;정한철
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1589-1597
    • /
    • 2021
  • 연안지역의 해저지하수 유출(SGD)은 하천과 함께 영양염류와 미량금속 등을 해양으로 유입시키는 주요 수송로 역할로써 중요성이 대두되고 있다. 이에 우리나라 육상의 연안지역인 낙동강 대권역 유역에 대해 1986년부터 2020년까지 35개년의 월별 SGD를 추정하고 계절적 변화와 시공간적 특성을 분석하였다. SGD 산출지점인 낙동강 연안유역은 SRTM(Shuttle Radar Topography Mission) DEM(Digital Elevation Model) 자료를 이용하여 210개의 유역을 추출하였으며, 우리나라에 적용가능한 가장 높은 해상도의 전지구 모델인 FLDAS(Famine Early Warning Systems Network Land Data Assimilation System) 10 km recharge를 통해 추정한 낙동강 연안유역의 연평균 SGD는 466.7 m2/yr 로 나타났다. 낙동강 연안유역 SGD는 시계열적으로 큰 변동성은 없었으나 여름에 집중되던 SGD유출이 가을철로 주요유출 시기가 확대되는 경향을 보였다. 또한 공간적으로는 큰 수계와 인접한 연안지역에서 계절에 관계없이 SGD 유출이 많고 1980년대 이후로 시간적 변화에 따라 다소 증가하고 있는 경향을 확인하였다. 이러한 결과는 낙동강 지역의 강수패턴의 시기가 확대되며, 기저유량이 많은 지역의 집수량이 높은 데에 따른 것으로 사료된다. 본 연구는 우리나라의 SGD 특성을 탐구하기 위한 모델링 기법을 제시한 선행적 연구이며 우리나라 해저지하수 유출이 해양에 미치는 영향과 연안관리를 위한 기초자료로 활용성이 기대된다.

KOMPSAT-3와 Sentinel-1 SAR 영상을 적용한 토양 수분도와 NDWI 결과 비교 분석 (Comparative Analysis of NDWI and Soil Moisture Map Using Sentinel-1 SAR and KOMPSAT-3 Images)

  • 이지현;김광섭;이기원
    • 대한원격탐사학회지
    • /
    • 제38권6_4호
    • /
    • pp.1935-1943
    • /
    • 2022
  • 위성 영상을 활용하여 대규모 또는 정밀 토양 수분도를 제작하는 방법의 개발과 이를 적용한 사례 연구는 원격탐사 응용 분야에서 중요한 연구 주제 중 하나이다. 이 연구는 제주도 연구 지역을 대상으로 토양 수분도를 제작하였다. 이를 위하여 선형으로 조정된 Synthetic Aperture Radar (SAR) 편광 영상과 입사각 정보를 이용하여 광학 영상과 함께 토양 수분도를 산출하였다. SAR 영상은 Google Earth Engine (GEE)에서 제공하는 후반 산란 계수 Analysis Ready Data (ARD) 자료를 사용하였다. 또한 Environmental Systems Research Institute (ESRI)의 토지 피복도(land cover map)와 KOMPSAT-3 고해상도 위성 영상의 지표 반사도로부터 산출한 식생 지수 정보(normalized difference vegetation index, NDVI)를 토양 수분도 처리 과정에 적용하였다. 이처럼 SAR 영상과 광학영상 정보를 융합하여 처리하는 경우는 토양 수분 산출물의 신뢰도를 향상할 수 있는 것으로 알려져 있다. 산출물의 과학적 분석을 위하여 KOMPSAT-3 영상으로 제작한 정규 수분 지수(normalized difference water index, NDWI)와 비교 분석을 실시하였다. 그리고 KOMPSAT-3 처리 결과의 검증을 위하여 Landsat-8 위성의 NDWI 처리 결과와 비교하였다. 이 연구를 통하여 산출한 토양 수분도 결과는 KOMPSAT-3 영상과 Landsat-8 위성으로 각각 처리한 NDWI 처리 결과와 높은 상관도를 나타냈다. 마지막으로 이 연구에 사용한 토양 수분 산출 알고리즘을 우리나라 고해상도 위성인 KOMPSAT-5 영상에 맞게 추가 개발하면 다른 외부 영상 없이 KOMPSAT 광학 위성정보와 KOMPSAT SAR 영상정보를 이용한 정밀 토양 수분도 제작이 가능할 것이라고 생각한다.

Wind Vector Retrieval from SIR-C SAR Data off the East Coast of Korea

  • Kim, Tai-Sung;Park, Kyung-Ae;Moon, Woo-Il
    • 한국지구과학회지
    • /
    • 제31권5호
    • /
    • pp.475-487
    • /
    • 2010
  • Sea surface wind field was retrieved from high-resolution SIR-C SAR data by using CMOD algorithms off the east coast of Korea. In order to extract wind direction information from SAR data, a two-dimensional spectral analysis method was applied to the normalized radar cross section of the image. An $180^{\circ}$-ambiguity problem in the determination of wind direction was solved by selecting a direction nearest to the wind vector of the ECMWF reanalysis data. Comparison of the wind retrieval patterns with the ECMWF and NCEP/NCAR dataset showed RMS errors in the range of 1.30 to $1.72\;ms^{-1}$. In contrast, comparison of wind directions revealed large errors of greater than $60^{\circ}$, which is enormously higher than the permitted limit of about $20^{\circ}$ for satellite scatterometer winds. Compared with wind speed results from different algorithms, wind vectors based on commonly-used CMOD4 algorithm showed good agreement with those derived by other algorithms such as CMOD_IFR2 and CMOD5, particularly at medium winds from 4 to $8\;ms^{-1}$. However, apparent discrepancy appeared at low winds (< $4\;ms^{-1}$). This study also addressed an importance of accurate wind direction data to improve the accuracy of wind speed retrieval and discussed potential causes of wind retrieval errors from SAR data.