• Title/Summary/Keyword: High Resolution Radar

Search Result 327, Processing Time 0.029 seconds

PACIFIC EXTREME WIND AND WAVE CONDITIONS OBSERVED BY SYNTHETIC APERTURE RADAR

  • Lehner, Susanne;Reppucci, Antonio;Schulz-Stellenfleth, Johannes;Yang, Chang-Su
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.390-393
    • /
    • 2006
  • It is well known that synthetic aperture radar (SAR) provides information on ocean winds and surface waves. SAR data are of particularly high value in extreme weather conditions, as radar is able to penetrate the clouds providing information on different ocean surface processes. In this presentation some recent results on SAR observation of extreme wind and ocean wave conditions is summarised. Particular emphasize is put on the investigation of typhoons and extratropical cyclones in the North Pacific. The study is based on the use of ENVISAT ASAR wide swath images. Wide swath and scansar data are well suited for a detailed investigation of cyclones. Several examples like, e.g., typhoon Talim will be presented, demonstrating that these data provide valuable information on the two dimensional structure of the both the wind and the ocean wave field. Comparisons of the SAR observation with parametric and numerical model data will be discussed. Some limitations of standard imaging models like, e.g., CMOD5 for the use in extreme wind conditions are explained and modifications are proposed. Finally the study summarizes the capabilities of new high resolution TerraSAR-X mission to be launched in October 2006 with respect to the monitoring of extreme weather conditions. The mission will provide a spatialresolution up to 1m and has full polarimetric capabilities.

  • PDF

HPA MMIC to W/G Antenna Transition Loss Analysis and Development Results of W-band Transmitter Module

  • Kim, Wansik;Jung, Juyong;Lee, Juyoung;Kim, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2019
  • This paper will read about a multichannel frequency-modulated continuous wave (FMCW) radar sensor with switching transmit (TX) antennas is developed at W-band. To achieve a high angular resolution, a uniform linear array consisting of 5 switching-TX and 12 receive (RX) antennas is employed with the digital beamforming technique. The overall radar front-end module comprises a W-band transceiver and TX/RX antennas. A multichannel transceiver module consists of 5 up-conversion and 12 down-conversion channels, where one of the TX channels is sequentially switched ON. For developing transmitter, we developed an HPA (high power amplified) MMIC chip for W-band radar system and fabricated a transmitter module using this chip. In order to develop the W-band transmitter, we analyzed the important antenna transition structure from HPA MMIC line to W/G (Waveguide)antenna via M/S(microstrip) and fabricated it with 5 transmission channels. As a result, the output power of the transmitter was within 1 dB of the error range after analysis and measurement under normal temperature and environmental conditions.

A Study on RCS and Scattering Point Analysis Based on Measured Data for Maritime Ship (실측자료 기반 함정 RCS 측정 및 산란점 분석 연구)

  • Jung, Hoi-In;Park, Sang-Hong;Choi, Jae-Ho;Kim, Kyung-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.97-105
    • /
    • 2020
  • In order to set up radar cross section(RCS) reduction factors for a target, the scattering point position of the target should be identified through inverse synthetic aperture radar(ISAR) image analysis. For this purpose, ISAR image focusing is important. Maritime ship is non-linear maneuvering in the sea, however, which blur the ISAR image. To solve this problem, translational and rotational motion compensation are essential to form focused ISAR image. In this paper, hourglass and ISAR image analysis are performed on the collected data in the sea instead of using the prediction software tool, which takes much time and cost to make computer-aided design(CAD) model of the ship.

Assessment of Stand-alone Utilization of Sentinel-1 SAR for High Resolution Soil Moisture Retrieval Using Machine Learning (기계학습 기반 고해상도 토양수분 복원을 위한 Sentinel-1 SAR의 자립형 활용성 평가)

  • Jeong, Jaehwan;Cho, Seongkeun;Jeon, Hyunho;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.571-585
    • /
    • 2022
  • As the threat of natural disasters such as droughts, floods, forest fires, and landslides increases due to climate change, social demand for high-resolution soil moisture retrieval, such as Synthetic Aperture Radar (SAR), is also increasing. However, the domestic environment has a high proportion of mountainous topography, making it challenging to retrieve soil moisture from SAR data. This study evaluated the usability of Sentinel-1 SAR, which is applied with the Artificial Neural Network (ANN) technique, to retrieve soil moisture. It was confirmed that the backscattering coefficient obtained from Sentinel-1 significantly correlated with soil moisture behavior, and the possibility of stand-alone use to correct vegetation effects without using auxiliary data observed from other satellites or observatories. However, there was a large difference in the characteristics of each site and topographic group. In particular, when the model learned on the mountain and at flat land cross-applied, the soil moisture could not be properly simulated. In addition, when the number of learning points was increased to solve this problem, the soil moisture retrieval model was smoothed. As a result, the overall correlation coefficient of all sites improved, but errors at individual sites gradually increased. Therefore, systematic research must be conducted in order to widely apply high-resolution SAR soil moisture data. It is expected that it can be effectively used in various fields if the scope of learning sites and application targets are specifically limited.

X-Band FMCW RADAR Signal Processing for small ship (소형선박용 X-Band FMCW 레이더 신호처리부 설계 및 구현)

  • Kim, Jeong-Yeon;Chong, Kil-To;Kim, Tae-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3121-3129
    • /
    • 2009
  • Conventional marine radar systems utilize pulse radar which is capable of high-power transmissions and is effective for remote detection purposes. A pulse radar is most commonly used on medium or large vessels due to its expensive installation and maintenance costs. I propose the use of a Frequency Modulated Continuous Wave (FMCW) radar system operated at low-power and high-resolution instead of the conventional pulse-radar based system. The transmitted and received signals of the FMCW radar system were theoretically analyzed and radar signal processing design and simulation experiments were performed to detect the range and speed. Intermediate Frequency (IF) signal mixed with virtual transmit and receive signals were generated to perform FMCW radar signal processing simulations where the IF signal underwent noise reduction through a lowpass filter. The maximum frequency was derived through the sample interval of the FFT size instead of using A/D converter. This maximum frequency was used to get the frequency range and frequency speed which were in turn used to calculate the range and speed. The virtual beat frequency generated using MATLAB is utilized to analyze the beat frequency used in the actual FMCW radar system signal processing. The differences in the range and speed of the beat frequency signals are processed and analyzed.

High Resolution InSAR Phase Simulation using DSM in Urban Areas (도심지역 DSM을 이용한 고해상도 InSAR 위상 시뮬레이션)

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Lee, Dong-Cheon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • Since the radar satellite missions such as TerraSAR-X and COSMO-SkyMed were launched in 2007, the spatial resolution of spaceborne SAR(Synthetic Aperture Radar) images reaches about 1 meter at spotlight mode. In 2011, the first Korean SAR satellite, KOMPSAT-5, will be launched, operating at X-band with the highest spatial resolution of 1 m as well. The improved spatial resolution of state-of-the-art SAR sensor suggests expanding InSAR(Interferometric SAR) analysis in urban monitoring. By the way, the shadow and layover phenomena are more prominent in urban areas due to building structure because of inherent side-looking geometry of SAR system. Up to date the most conventional algorithms do not consider the return signals at the frontage of building during InSAR phase and SAR intensity simulation. In this study the new algorithm introducing multi-scattering in layover region is proposed for phase and intensity simulation, which is utilized a precise LIDAR DSM(Digital Surface Model) in urban areas. The InSAR phases simulated by the proposed method are compared with TerraSAR-X spotlight data. As a result, both InSAR phases are well matched, even in layover areas. This study will be applied to urban monitoring using high resolution SAR data, in terms of change detection and displacement monitoring at the scale of building unit.

Scalable FFT Processor Based on Twice Perfect Shuffle Network for Radar Applications (레이다 응용을 위한 이중 완전 셔플 네트워크 기반 Scalable FFT 프로세서)

  • Kim, Geonho;Heo, Jinmoo;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.429-435
    • /
    • 2018
  • In radar systems, FFT (fast Fourier transform) operation is necessary to obtain the range and velocity of target, and the design of an FFT processor which operates at high speed is required for real-time implementation. The perfect shuffle network is suitable for high-speed FFT processor. In particular, twice perfect shuffle network based on radix-4 is preferred for very high-speed FFT processor. Moreover, radar systems that requires various velocity resolution should support scalable FFT points. In this paper, we propose a 8~1024-point scalable FFT processor based on twice perfect shuffle network algorithm and present hardware design and implementation results. The proposed FFT processor was designed using hardware description language (HDL) and synthesized to gate-level circuits using $0.65{\mu}m$ CMOS process. It is confirmed that the proposed processor includes logic gates of 3,293K.

Motion Derivatives based Entropy Feature Extraction Using High-Range Resolution Profiles for Estimating the Number of Targets and Seduction Chaff Detection (표적 개수 추정 및 근접 채프 탐지를 위한 고해상도 거리 프로파일을 이용한 움직임 미분 기반 엔트로피 특징 추출 기법)

  • Lee, Jung-Won;Choi, Gak-Gyu;Na, Kyoungil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • This paper proposes a new feature extraction method for automatically estimating the number of target and detecting the chaff using high range resolution profile(HRRP). Feature of one-dimensional range profile is expected to be limited or missing due to lack of information according to the time. The proposed method considers the dynamic movements of targets depending on the radial velocity. The observed HRRP sequence is used to construct a time-range distribution matrix, then assuming diverse radial velocities reflect the number of target and seduction chaff launch, the proposed method utilizes the characteristic of the gradient distribution on the time-range distribution matrix image, which is validated by electromagnetic computation data and dynamic simulation.

IFSAR, Azimuth Aliasing Resolution, and Interferogram Generation Algorithms (IFSAR, 방위방향 Aliasing 제거 및 인터페로그램 생성 생성 알고리즘)

  • 홍인표;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.397-402
    • /
    • 2002
  • The IFSAR technique using SAR data has various applications and is the only latest technology to produce high precision height information from the radar phase data. This paper describes the whole implementation algorithm of IFSAR technique. Also it suggests the algorithms for azimuth aliasing resolution and interferogram generation of SAR data. Those are proved through the experiment: azimuth aliasing is resolved and interferogram is generated properly. Therefore, it proposes the method for interferogram generation, an essential process in extracting high precision height data, and the development approach to principal modules of IFSAR algorithm.

GEOMETRIC COREGISTRATION FOR TERRASAR-X INTERFEROMETRY

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Won, loong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.251-254
    • /
    • 2008
  • The German radar satellite TerraSAR was launched in 2007. In this study, interferogram is generated using TerraSAR-X data and DEM (Digital Elevation Model). Coregistration procedures used with SAR images (i.e. master and slave) in traditional method results in serious errors for high resolution TerraSARX data because of the mutual shift of the master and slave images due to topography. This error becomes more serious in mountainous areas in which the coherence between interferometric pairs is relatively low. Here we processed a geometric coregistration with DEM exploiting height information. Through the method, interferometry processing is fulfilled to generate a qualified interferogram and coherence is improved. This approach will help high resolution X-band SAR interferometry in mountainous area.

  • PDF