• Title/Summary/Keyword: High Pressure Vessel

Search Result 357, Processing Time 0.024 seconds

Composite Pressure Vessel for Natural Gas Vehicle by Filament Winding (필라멘트 와인딩 공정에 의한 천연가스 차량용 복합재료 압력용기)

  • 김병선;김병하;김진봉
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.1-6
    • /
    • 2004
  • Composite pressure vessels with HDPE (high density polyethlyne) liner with metal boss at each end were developed by Filament Winding Process. The vessel is composed of a dome-shaped part at each end and a cylinder-shaped part at the middle of the vessel. The environmental tests carried out for possible vessel materials such as High Density Polyethlyn (HDPE), resins and reinforcing fibers up to a year showed no significant damages. The boss was designed to minimize the gas leak which was verified by FEM analysis. Most ideal fiber tension was obtained by experimental method and the fiber volume fraction, $\textrm{V}_{f}$, obtained by image analyzer were 55.4 % in cylinder and 55.6 % in dome parts, respectively. Winding pattern is programmed to control the composite thickness in the dome areas such that the failure of the vessel may occur in the cylinder. During the cure, the vessel was rotated and a constant internal pressure of 0.62 bar was applied. From this, the vessel's burst pressure is improved by 28 %. The burst and fatigue tests for under-wound and fully wound vessel showed satisfactory results.

Study on the Measurement of Safety of a High Pressure Vessel (고압용기(高壓容器)의 안전도(安全度) 측정(測定)에 관(關)한 연구(硏究))

  • Yim, Tong-Kyu;Choi, Man-Yong;Han, Eung-Kyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.2 no.2
    • /
    • pp.9-16
    • /
    • 1983
  • There are two weak points in a high pressure vessel, one is a corner, the other is a crack on the base. In order to evaluate safety of a department of a corner and a crack like a starfish on the base in a high pressure vessel (working pressure: $130kg/cm^{2}$), which was made by Marison's Process, we analyzed stress by strain gauge, measured thickness and hardness by ultrasonic testing, and were able to test pressure by water pressure from nondestructive testing. Also destructive testings were applied to measure thickness and to observe microstructure and chemical composition of a corner on the base. From the results of the experiment, values of experiment were satisfied with a condition of application. But, it is considered that a crack on the base is to be investigated with more by Fracture Mechanics.

  • PDF

Computational Analysis for Improving Internal Flow of High Pressure Methanol Steam Reformer Pressure Vessel (고압형 메탄올 수증기 개질기 압력용기의 내부 유동 개선을 위한 전산 해석)

  • YU, DONGJIN;JI, HYUNJIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.411-418
    • /
    • 2020
  • A reformer is a device for producing hydrogen used in fuel cells. Among them, methanol steam reformer uses methanol as fuel, which is present as a liquid at room temperature. It has the advantage of low operating temperature, high energy density, and high hydrogen production. The purpose of this study is to improve the internal flow of the pressure vessel when a bundle of methanol steam reformer in the pressure vessel goes out to a single outlet. An analysis of equilibrium reaction to methanol steam reforming reaction was conducted using Aspen HYSYS® (Aspen Technology Inc., Bedford, USA), and based on the results, computational analysis was conducted using ANSYS Fluent® (ANSYS, Inc., Canonsburg, USA). For comparison of the results, the height of the pressure vessel, outlet diameter, and fillet was set as variables, and the optimum geometry was selected by comparing the effects of gravity and the amount of negative pressure.

Degradation Evaluation of High Pressure Reactor Vessel in field Using Electrical Resistivity Method (전기비저항법을 이용한 고압반응기 열화도 현장평가)

  • Park, Jong-Seo;Baek, Un-Bong;Nahm, Seung-Hoon;Han, Sang-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.377-383
    • /
    • 2005
  • Because explosive fluid is used at high temperature or under high pressure in petrochemistry and refined oil equipment, the interest about safety of equipments is intensive. Specially, the safety of high pressure reactor vessel is required among them. The material selected in this study is 2.25Cr-1Mo steel that is widely used for high pressure reactor vessel material of petrochemical plant. Eight kinds of artificially aged specimens were prepared by differing from aging periods under three different temperatures. The material was iso-thermally heat treated at higher temperatures than $391^{\circ}C$ that is the operating temperature of high pressure reactor vessel. Vickers hardness properties and electrical resistivity properties about artificially aged material as well as un-aged material were measured, and master curves were made out from the correlation with larson-Miller parameter. And electrical resistivity properties as well as Victors hardness properties measured at high pressure reactor vessel of the field were compared with master curves made out in a laboratory. Degradation evaluation possibility in the field of high pressure reactor vessel by using electrical resistivity method was examined. Electrical resistivity property measured in the field is similar with that of artificially aged material in similar aging level.

Finite Element Analysis of Stress Behaviour Characteristics in Gas Pressure Vessels (가스압력용기의 응력거동특성에 관한 유한요소해석)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.58-64
    • /
    • 2003
  • This paper presents design safety analysis of pressure vessels. The gas pressure and thermal loads are applied to the pressure vessel simultaneously. In this study, ASME Sec. VIII Div. 2 code was accepted for the safety design of high-pressure vessel. And this result was analyzed using a coupled thermal-mechanical FEM analysis technique. The FEM computed result shows that ASME design code may not guarantee for combined loads of high gas pressure and thermal loads. And solid pressure vessel may be safe compared to other pressure vessels with supporting rings round the cylinder body.

  • PDF

Development of Subminiature Type 3 Composite Pressure Vessel for Cooling Unit in Electric Appliances (전자제품 쿨링 유닛용 초소형 타입 복합재 압력용기 개발)

  • Cho, Sung-Min;Lee, Seung-kuk;Moon, Jong-sam;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.151-157
    • /
    • 2018
  • In this study, we have developed a composite pressure vessel that is compact and can store refrigerant at high pressure to increase the refrigerant volume. The composite pressure vessel is made of aluminum-based duralumin, which has high rigidity and excellent elongation in the inner liner, considering the characteristics of products in the aerospace and defense industry, where the safety of the applied product is considered as a priority. High strength carbon fiber was applied to the outside. In order to evaluate the performance of the developed product, burst test and cycling test were carried out. In burst test, an excellent safety margin equivalent to 2.7 times the operating pressure was obtained. In cycling test, a stable failure mode in which 'pre-burst leak' occurs is proved and the soundness of the product is proved.

The Structural Integrity Evaluation of Composite Pressure Vessel Using Acoustic Emission (음향방출을 이용한 복합재 압력용기의 건전성 평가)

  • 이상호;최용규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.1-11
    • /
    • 1997
  • During hydroproof test of composite pressure vessel, acoustic emission signal was measured and analyzed to evaluate structural integrity of composite motor case. When pressure was held for 1 min. at constant pressure from low pressure level to high pressure level, the pattern of hit rate of good composite pressure vessel is increased with higher value than that of bad composite pressure vessel. This report also presents detection possibility of burst location approximately in the range of 25∼36% of burst pressure using energy rate. In case that it is difficult to detect burst location of composite motor case, it is possible to detect burst location, i.e. structurally weak location of composite pressure vessel with applying same pressure lower than maximum expected operating pressure(MEOP) repeatedly.

  • PDF

Development of Design Method on High Pressure Vessel of 100L-700MPa Grade (100L-700MPa급 초고압 용기 설계 기술 개발)

  • Park, Bo-Gyu;Lee, Ho-Joon;Lee, In-Jun;Park, Si-Woo;Cho, Kyu-Shang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.67-73
    • /
    • 2019
  • An ultra-high pressure treatment device is a device used for increasing the shelf life of food by sterilizing it by applying hydrostatic pressure to solid or liquid food. The ultrahigh pressure treatment system developed in this study is a pressure vessel with a processing capacity of 100 L and a maximum pressure of 700 MPa. Pressure vessels for ultrahigh-pressure processing equipment are manufactured using wire-winding techniques. The design formula for making ultra-high pressure vessels with wire windings is given in ASME Section VIII - Division 3. In this study, the ratio of the cylinder to the winding area that can be applied in a wire-winding application was analyzed using a finite element analysis. Furthermore, the relationship between the variation of the residual stress in the vessel and the ratio of the winding area due to the variation of the winding tension was analyzed, and a design guide applicable to the actual product design was developed. Finally, the design equation was modified by presenting the coefficients to correct the difference between the finite element analysis and the design equation.

A Study on the Design Safety of Type III High-Pressure Hydrogen Storage Vessel (Type III 고압수소저장용기의 설계 안전성 연구)

  • Park, Woo Rim;Jeon, Sang Koo;Kim, Song Mi;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.7-14
    • /
    • 2019
  • The type III vessel, which is used to store high-pressure hydrogen gas, is made by wrapping the vessel's liner with carbon fiber composite materials for strength performance and lightening. The liner seals the internal gas and the composite resists the internal pressure. The properties of the fiber composite material depends on the angle and thickness of the fiber. Thus, engineers should consider these various design variables. However, it significantly increases the design cost due to the trial and error under designing based on experience or experiments. And, for aluminum liners, fatigue loads due to using and charging could give a huge impact on the performance of the structure. However, fatigue failure does not necessarily occur in the position under the highest load in use. Therefore, for hydrogen storage vessel, fatigue evaluation according to design patterns is essential because stress distribution varies depend on composite layer patterns. This study performed an optimization analysis and evaluated a high-pressure hydrogen storage vessel to minimize these trial and error and improve the reliability of the structure, while simultaneously conducting fatigue assessment of all patterns derived from the optimization analysis process. The results of this study are thought to be useful in the strength improvement and life design of composite reinforced high-pressure storage vessels.

The Assembly and Test of Pressure Vessel for Irradiation (조사시험용 압력용기의 조립 및 시험)

  • Park, Kook-Nam;Lee, Jong-Min;Youn, Young-Jung;June, Hyung-Kil;Ahn, Sung-Ho;Lee, Kee-Hong;Kim, Young-Ki;Kennedy, Timothy C.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.179-184
    • /
    • 2009
  • The Fuel Test Loop(FTL) which is capable of an irradiation testing under a similar operating condition to those of PWR(Pressurized Water Reactor) and CANDU(CANadian Deuterium Uranium reactor) nuclear power plants has been developed and installed in HANARO, KAERI(Korea Atomic Energy Research Institute). It consists of In-Pile Section(IPS) and Out-of Pile System(OPS). The IPS, which is located inside the pool is divided into 3-parts; the in-pool pipes, the IVA(IPS Vessel Assembly) and the support structures. The test fuel is loaded inside a double wall, inner pressure vessel and outer pressure vessel, to keep the functionality of the reactor coolant pressure boundary. The IVA is manufactured by local company and the functional test and verification were done through pressure drop, vibration, hydraulic and leakage tests. The brazing technique for the instrument lines has been checked for its functionality and performance. An IVA has been manufactured by local technique and have finally tested under high temperature and high pressure. The IVA and piping did not experience leakage, as we have checked the piping, flanges, assembly parts. We have obtained good data during the three cycle test which includes a pressure test, pressure and temperature cycling, and constant temperature.