• Title/Summary/Keyword: High Pressure Extraction Process

Search Result 81, Processing Time 0.019 seconds

Enhancement of Immuno Modulatory Activities of Acer mono Bark from Low Temperature High Pressure Extraction Process (저온 고압 추출에 의한 고로쇠 수피의 면역활성 증진)

  • Jeong, Myoung-Hoon;Oh, Sung-Ho;Kim, Seung-Seop;Kwon, Min-Chul;Choi, Woon-Yong;Seo, Yong-Chang;Lee, Hak-Ju;Kang, Ha-Young;Lee, Hyeon-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Experiments were performed for investigate the immune activities on human B and T cell growth and secretion of their cytokines. Also, antibodies in serum were investigated in female ICR mouse by feeding the extracts of Acer mono at dose of 30 and 100 mg/mL of one day orally for 15 days. The cytotoxicity of the samples on normal human cell (HEL299) was below 24.15% in adding the all extracts. Both human immune B and T cells were increased up to about 40% by the high pressure extraction process. The secretion of cytokines (IL-6, TNF-${\alpha}$) on human B and T cells were increased up to 20-50% by adding the high pressure extraction process compare to the hot water extraction process. Also, total serum IgG levels increased by feeding Acer mono extacts. It can be conclude that optimum condition for efficient extraction of Acer mono as functional materials is solvent extraction process using water with high pressure at below $100^{\circ}CA$ than typical process.

Enhancement of Antioxidant Activities of Blueberry (Vaccinium ashei) by Using High-Pressure Extraction Process (초고압 처리가 블루베리의 항산화 증진에 미치는 영향)

  • Park, Sung Jin;Choi, Young Bum;Ko, Jung Rim;Kim, Young Eon;Lee, Hyeon Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.471-476
    • /
    • 2014
  • We developed a method for improving the antioxidant activities of blueberry (Vaccinium ashei) extracts through an ultra high-pressure extraction process. Blueberries were subjected to water extraction at $60^{\circ}C$ and 300 MPa for 5 min (High Pressure Extraction, HPE5) and 15 min (HPE15). Extraction yields obtained by ultra high-pressure extraction process were 18.48, and 19.89%, respectively. Total polyphenol contents were estimated to be 28.3, and 28.9 mg/g, whereas flavonoid contents were measured as 5.9 and 6.0 mg/g, respectively. Generally, HPE resulted in higher yields than the conventional extraction process. Further, HPE15 showed 53.84% DPPH radical scavenging activity (EDA, %) at $1,000{\mu}g/mL$. Reducing power of HPE15 showed its highest activity of 0.21. In general, antioxidant activities of blueberry increased by HPE. Therefore, HPE of blueberry resulted in higher antioxidant activity than conventional water extraction. These results demonstrate obvious advantages in terms of higher efficiency, shorter extraction time, and lower energy costs.

Application of Biological industry using High Hydrostatic Pressure (HHP) system (초고압 시스템을 이용한 생물 산업의 적용)

  • Lee, Kwang-Jin;Choi, Sun-Do
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.362-368
    • /
    • 2008
  • High Hydrostatic Pressure assisted (HHP) process enhancement for food and allied industries are reported in this paper review. Recently, considerable research has been devoted to the improvement of mild thermal processing techniques and to the development of alternative mild processing technologies. HHP assisted can enhance existing extraction, processes and enable new commercial extraction opportunities and processes. New HHP processing approaches have been proposed, including, the potential for modification of plant cell material to provide improved bioavailability of micro nutrients while retaining the natural-like quality, simultaneous extraction. Therefore, High Hydrostatic Pressure assisted (HHP) technologies could have a strong presence in the future of the biotechnology industry.

Effect of High Pressure and Steaming Extraction Processes on Ginsenosides Rg3 and Rh2 Contents of Cultured-Root in Wild Ginseng (Panax ginseng C. A. Meyer) (초고압 증숙처리가 산삼배양근의 진세노사이드 Rg3와 Rh2의 함량에 미치는 영향)

  • Choi, Woon-Yong;Lee, Choon-Geun;Seo, Yong-Chang;Song, Chi-Ho;Lim, Hye-Won;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.4
    • /
    • pp.270-276
    • /
    • 2012
  • This study was performed to enhance contents of low molecular weight ginsenoside Rh2 and Rg3 using an ultra high pressure and steaming process in wild cultured-Root in wild ginseng. For selective increase in contents of Rg3 and Rh2 in cultured wild ginseng roots, an ultra high extraction was applied at 500MPa for 20 min which was followed by steaming process at $90^{\circ}C$ for 12 hr. It was revealed that contents of ginsenosides, Rb1, Rb2, Rc and Rd, were decreased with the complex process described above, whereas contents of ginsenoside Rh2 and Rg3 were increased up to 4.918 mg/g and 6.115 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the cultured wild ginseng roots treated by the complex process was 0.64 ppm but it was 0.78 ppm when it was treated with the steaming process. From the results, it was strongly suggested that low molecular weight ginsenosides, Rh2 and Rg3, are converted from Rb1, Rb2, Rc, and Rd which are easily broken down by an ultra high pressure and steaming process. This results indicate that an ultra high pressure and steaming process can selectively increase in contents of Rg3 and Rh2 in cultured wild ginseng roots and this process might enhance the utilization and values of cultured wild ginseng roots.

The Comparison of Extraction Process for Enhancement of Immunomodulating Activities of Ulva pertusa kjellman (구멍갈파래의 면역활성 증진을 위한 추출방법 비교)

  • Han, Jae-Gun;Ha, Ji-Hye;Choi, Yeong-Beom;Go, Jeong-Lim;Kang, Do-Hyung;Lee, Hyeon-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.380-385
    • /
    • 2009
  • The purpose of this study was to investigate the immunomodulatory effect of Ulva pertusa kjellman extract after undergoing a low temperature and high-pressure extraction process. First, the extracts obtained under the extraction conditions of 150 MPa and $80^{\circ}C$showed a relatively high antioxidant activity, with 90% super oxide radical activity compared to the extracts from conventional extraction process with water at $100^{\circ}C$. This extract also improved the growth of both human immune B and T cells up to $14.5{\times}10^4$ cells/mL and $14.2{\times}10^4$ cells/mL compared to $9.1{\times}10^4$ cells/mL in adding the extracts from conventional processes. It was found that the extracts obtained at 100 MPa and $60^{\circ}C$ showed better activities in NK cell growth and NO production from macrophage as $11.8{\times}10^2$ cells/mL and 30.0 ${\mu}M$. Overall, the extracts from high pressure and low temperature extraction process had relatively higher immune activation activity, possibly because the low temperature and high pressure extraction process may have higher yields of active compounds and have less damage to useful ingredients from relatively weak marine natural resources, such as Ulva pertusa kjellmann than that from the conventional extraction system.

Enhancement of Antioxidant Activities of Codonopsis lanceolata and Fermented Codonopsis lanceolata by Ultra High Pressure Extraction (초고압 추출 처리에 의한 더덕 및 발효더덕의 항산화 증진)

  • Park, Sung-Jin;Park, Dong-Sik;Lee, Su-Bock;He, Xin-Long;Ahn, Ju-Hee;Yoon, Won-Byung;Lee, Hyeon-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1898-1902
    • /
    • 2010
  • This study was designed to evaluate antioxidant activity of low-quality Codonopsis lanceolata treated by fermentation process followed by hydraulic high pressure extraction. C. lanceolata was subjected to 5,000 bar for 30 min at $25^{\circ}C$. The highest phenolics content was observed in the combined treatment of fermentation and high pressure extraction (35.11 mg/100 g), followed by high pressure extraction alone (14.78 mg/100 g) and conventional extraction (14.56 mg/100 g). The content of flavonoids followed the similar pattern as that of total phenolics, showing 280.86 mg/100 g of C. lanceolata treated by the combined fermentation with high pressure extraction whereas 193.05 mg/100 g of C. lanceolata treated by the conventional extraction. The DPPH scavenging activity was 69.32% at 0.6 mg/mL of C. lanceolata treated by the combined process, while the DPPH scavenging activities of C. lanceolata treated by high pressure extraction alone and the conventional extraction were 60.35% and 30.92%, respectively. The highest reducing power of C. lanceolata extract (1.0 mg/mL) was observed at the combined treatment (0.926), followed by high pressure extraction alone (0.881) and the conventional extraction (0.733). The combination of fermentation with high pressure extraction significantly increased the contents of phenolics and flavonoids and also enhanced the antioxidant activity. Therefore, the combined application of fermentation and high pressure extraction can be an alternative technique for the extraction of C. lanceolata. These results provide useful information for enhancing biological properties of low-quality C. lanceolata.

Enhancement of Immune Activity of the Extracts from Codonopsis lanceolata by Stepwise Steaming Process and High Pressure Process (증숙 및 초고압 증숙 공정을 통한 더덕의 면역활성 증진)

  • Kim, Nam Young;Chung, Jae Youn;Lee, Hyeon Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.2
    • /
    • pp.134-139
    • /
    • 2014
  • This study was to investigate the improvement of immune activities of the extracts from Codonopsis lanceolata by stepwise steaming process and high pressure process. The phenol contents was $8.742{\mu}g/mg$ which was higher than that from conventional extraction using 70% ethyl alcohol at $80^{\circ}C$ for 24 hours. All of extracts at a concentration of $1.0mg/m{\ell}$ showed relatively low cytotoxicity on human normal kidney cell (HEK293) in range of 16 19%. The immune B and T cell growth was improved by extracts using the steamed and high pressure precess of C. lanceolata up to $180{\times}10^4cells/m{\ell}$ and $96{\times}10^4cells/m{\ell}$, respectively. The extract prepared also greatly increased the secretion of both IL-6 and TNF-${\alpha}$ from the stepwise steamed and high pressure process. This results can conclude that stepwise steamed and high pressure process effectively released active biomaterials which could important role in enhancing immune activity in the body.

Enhancement of Anticancer Activities of Ephedra sinica, Angelica gigas by Ultra High Pressure Extraction (초고압 추출 처리에 의한 마황과 당귀의 항암 활성 증진)

  • Jeong, Hyang-Suk;Han, Jae-Gun;Ha, Ji-Hye;Kim, Young;Oh, Sung-Ho;Kim, Seoung-Seop;Jeong, Myoung-Hoon;Choi, Geun-Pyo;Park, Uk-Yeon;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • This study was performed to enhance anticancer activities of E. sinica, and A. gigas by ultra high pressure extraction process. The cytotoxicity of E. sinica and A. gigas on human kidney cell (HEK293) was as low as 24.94% and 25.3% in adding 1.0 $mg/m{\ell}$ of the sample extracted at 500 Mpa for 15 minute. Generally, the inhibition of cancer cell growth on A549 and MCF-7 was increased over 20% in the ultra high pressure samples, compared to the conventional extraction process. Under the extracts from ultra high pressure process showed not only the strongest anticancer activities, but also had better stability than normal extracts. It was also found that the extracts of A. gigas reduced the hypertrophy of the internal organs, such as adrenal and spleen caused stresses in several mouse models.

Effects of Particle Size and High Pressure Process on the Extraction Yield of Oil Compounds from Soybean Powder Using Hexane and Supercritical Fluid (입자 크기와 초고압 처리에 따른 유기용매와 초임계 유체 추출법에서의 대두유 추출수율의 변화)

  • Yoon, Won-Byong
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.203-208
    • /
    • 2011
  • Effects of particle size and high pressure processing on the extraction rate of oil compounds from soybean powder were evaluated by Soxhlet method using hexane and supercritical fluid extraction (SFE) using $CO_{2}$. SFE was carried out at 4,000 psi and $50^{\circ}C$ for 4 hr. The mean particle sizes were varied from 26.7 to 862.0 ${\mu}m$ by controlling milling time. Saturation solubility increased as the particle size decreased. At large particle size, high pressure processing (HPP) showed higher extraction yield in both hexane extraction and SFE, but, as the particle size decreased, the HPP was irrelevant to the extraction yield in SFE. The higher extraction rate obtained from the smaller particle size. The scanning electronic microscopy of soybean powder treated by HPP showed pores on the surface of the particle. The higher extraction rate and yield from HPP treatment might be due to the less internal resistance of transferring the solvent and miscellar in the solid matrix by collapsing of tissues.

The Analysis of Physicochemical and Sensory Characteristics in Brown Stock - Comparison of Traditional Method and High-Pressure Extracted Method - (갈색 육수의 이화학적 및 관능적 특성 분석 - 전통 방식과 고압 가열 방식 비교 -)

  • Choi, Soo-Keun;Jang, Hyuk-Rae;Rha, Young-Ah
    • Culinary science and hospitality research
    • /
    • v.14 no.3
    • /
    • pp.196-209
    • /
    • 2008
  • This study was conducted to mass-produce brown stock optimized by using a high-pressure heating extractor and to use brown stock as a material for developing various products. For these purposes, we attempted to produce standardized brown stock by extracting brown stock using a high-pressure heating extractor and compared it with brown stock extracted by the traditional method in terms of general elements and mechanical and sensory characteristics. With regard to how to prepare optimal brown stock, the best brown stock was that extracted seven times repeatedly by the traditional method, but the method had a large economic loss in terms of material consumption and took a long time in extraction. Thus, considering time and labor, it was concluded that extraction at 120$^{\circ}C$ for 15 hours using a high-pressure heating extractor is the optimal extraction condition in terms of economic efficiency and quality. The results of this study are expected to be useful as a practical material for making brown stock production process more convenient, applying cooks' traditional cooking techniques to mass production, maintaining standardized superior quality and taste, and improving shelf life.

  • PDF