• Title/Summary/Keyword: High Power Rating

Search Result 166, Processing Time 0.024 seconds

A Comparative analysis of cultural power as a soft power among national power (국력요소 중, 소프트파워로서의 문화경쟁력 비교분석 연구)

  • Choi, Chang-Hyun;Park, Jeong-Bae;Kim, Jong-Geun
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.55-68
    • /
    • 2014
  • In this study, we performed an empirical research on how cultural power affects soft power as one of the elements of National Power. To fully exert the force of cultural power, appropriate level of "resources for power" need to be disseminated into cultural elements. Utilization of these resources need to appropriately developed and produced in quality and quantity when needed. This activity should be ensured with "composite support competence"; which is the combination of support organizations and their potentials. Indicators of cultural power includes society favorability rating, cultural favorability rating, E&D industry competitiveness index, and T&T competitiveness index. According to analysis of cultural power by each country, cultural industry (E&D) competitiveness index and travel and tourism (T&T) competitiveness index shows relatively high correlation. This research aims to analyze the "cultural power as soft power" of South Korea, China and US, and how they are different and how their resources of power are represented in their E&D and T&T competitiveness.

Low Cost Driving System for Plasma Display Panels by Eliminating Path Switches and Merging Power Switches

  • Lee, Dong-Myung;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.278-285
    • /
    • 2007
  • Recently, plasma display panels (PDP) have become the most promising candidate in the market for large screen size flat panel displays. PDPs have many merits such as a fast display response time and wide viewing angle. However, there are still concerns about high cost because they require complex driving circuits composed of high power switching devices to generate various voltage waveforms for three operational modes of reset, scan, and sustain. Conventional PDP driving circuits use path switches for voltage separation and a scan switch to offer a scan voltage for reset and scan operations, respectively. In addition, there exist reset switches to initialize PDPs by regulating the wall charge conditions with ramp shaped pulses, which means the necessity of specific power devices for the reset operation. Because power for the plasma discharge accompanied by a large current is transferred to a panel via path switches, high power rating switches are used for path switches. Therefore, this paper proposes a novel low-cost PDP driving scheme achieved by not only eliminating path switches but also merging the function of reset switches into other switches used for sustain or scan operations. The simulated voltage waveforms of the proposed topology and experimental results implemented in a 42-inch panel to demonstrate the validity of using a new gate driver that merges the functions of power switches are presented.

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 2010
  • This paper proposes an input-series-output-parallel connected ZVS full bridge converter with interleaved control for photovoltaic power conditioning systems (PV PCS). The input-series connection enables a fully modular power-system architecture, where low voltage and standard power modules can be connected in any combination at the input and/or at the output, to realize any given specifications. Further, the input-series connection enables the use of low-voltage MOSFETs that are optimized for a very low RDSON, thus, resulting in lower conduction losses. The system costs decrease due to the reduced current, and the volumes of the output filters due to the interleaving technique. A topology for a photovoltaic (PV) dc/dc converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing the PV module characteristics is proposed. The control scheme, consisting of an output voltage loop, a current loop and input voltage balancing loops, is proposed to achieve input voltage sharing and output current sharing. The total PV system is implemented for a 10-kW PV power conditioning system (PCS). This system has a dc/dc converter with a 3.6-kW power rating. It is only one-third of the total PV PCS power. A 3.6-kW prototype PV dc/dc converter is introduced to experimentally verify the proposed topology. In addition, experimental results show that the proposed topology exhibits good performance.

A Study on the High Power-Factor AC/DC converter using Resonant Auxiliary Circuit (공진형 보조 회로를 이용한 고역률 AC/DC 컨버터에 관한 연구)

  • Han, Dae-Hee;Kim, Yang;Baek, Soo-Hyun;Bae, Jin-Yang;Kim, Pil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1110-1113
    • /
    • 2002
  • A Single-Stage Single-Switch power-factor- correction(PFC) AC/DC Converter with universal input is presented in this paper. The PFC Converter can be achieved based upon the continuous current mode(CCM). The switch has less current and voltage stresses over a wide range of load variation so that a low voltage rating device can be used. The presented converter features high power factor high efficiency, and low cost. An 90W prototype was implemented to show that it has 70% efficiency with low voltage stress over universal line input.

  • PDF

A study on the application of HTS-FCL in Korean Customer Power System (국내 수용가계통에서의 초전도한류기 적용가능성 검토)

  • Lee Seung-Ryul;Kim Jong-Yul;Yoon Jae-Young
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.44-49
    • /
    • 2004
  • As the load density of KEOCO system is higher, the fault current can be much higher than SCC(Short Circuit Capacity) of circuit breaker. Fault current exceeding the rating of circuit breaker is a very serious problem in high density load area, which can threaten the stability of whole power system. Even though there are several alternatives to reduce fault current, as the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductivity Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. This study presents the application of 154kV HTS-FCL in Korean power system.

Multi-level PWM Inverter for 3-Phase High Voltage Power On-Grid (3상 고압 전력연계를 위한 다중레벨 인버터)

  • Ahn, Hyun-Jin;Lee, Hwa-Chun;Song, Sung-Gun;Lee, Sang-Hun;Park, Sung-Jun;Kim, Kwang-Heon;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.562-564
    • /
    • 2008
  • This paper deals with the three phase high voltage power-grid connection topology using multi-level inverter. Due to the multi-level inverter, these are improved effect of fluctuating voltage, problem of EMC and switching loss using suitable switching patterns of device, above all thing, it is easy to realize the system because of using lower voltage rating switch. This topology can be applicable to power-grid connection of wind system, there is a good point about economical efficiency. The simulation results are presented to verify the validity of the proposed topology.

  • PDF

A New High Efficiency Power Factor Correction PWM Rectifier with Reduced Conduction Loss and No Auxiliary Switches (새로운 고효율 역율보상 단상 PWM AC/DC 컨버터)

  • Kim, In-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.209-221
    • /
    • 1997
  • This paper presents a soft switching unity power factor PWM rectifier, which features reduced conduction losses and soft switching with no auxiliary switches. The soft switching are achieved by using a simple commutation circuit with no auxiliary switches, and reduced conduction loses are achieved by employing a single converter, instead of a typical front end diode rectifier followed by a boost rectifier. Furthermore, thanks to good features such as simple PWM control at constant frequency, low switch stress and low VAR rating of commutation circuits, it is suitable for high power applications. The principle of operation is explained in detail, and major characteristics analysis and experimental results of the new converter also included.

  • PDF

Feasibility Study on the Application of 154kV HTS-FCL in Korean Power System (국내 실계통에서의 154kV 초전도한류기 계통적용 가능성 검토)

  • Lee Seung Ryul;Kim Jong-Yul;Choi Heung-Kwan;Yoon Jae Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.12
    • /
    • pp.661-669
    • /
    • 2004
  • As the load density of KEPCO system is higher, the fault current can be much higher than SCC(Short Circuit Capacity) of circuit breaker. Fault current exceeding the rating of circuit breaker is a very serious problem in high density load area, which can threaten the stability of whole power system. Even though there are several alternatives to reduce fault current, as the superconductivity technology has been developed, the HTS-FCL (High Temperature Superconductivity Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. This study presents the application plication of 154kV HTS-FCL in Korean power system.

A Study on the BUCK ZC-ZVS Converter with Reduced Conduction Losses (도통손실을 감소시킨 강압형 영전류-영전압 컨버터에 관한 연구)

  • Lee, Yo-Seop;Lee, Won-Seok;Lee, Seong-Baek
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.686-691
    • /
    • 1999
  • In a switching power supply, the high frequency switching makes the passive components small, but the losses and the stresses of switches are increased by the switching frequency. Therefore, zero crossing technology using resonant is used to improve defect in high switching. In generally, zero crossing switching consists of Zero Current Switching(ZCS) and Zero Voltage Switching(ZVS). This paper proposes A Buck ZC-ZVS Converter with Reduced Conduction Losses. Comparing with a conventional Buck ZC-ZVS Converter, the proposed converter operates with the smaller rated power. This is achieved by changing the auxiliary switch position, which reduces its rating power. Simulation results using Pspice program about test circuit with rated 160W(30V, 5.3A) at 30kHz and experiment result under same condition were described in the paper.

  • PDF

Design of Single-Phase Unity Power Factor High Efficiency PWM Rectifier (단위역률을 갖는 고효율 PWM 단상 정류기의 설계)

  • Min, B.H.;Lee, Y.H.;Park, H.Y.;Kim, I.D.;Nho, E.C.;Ahn, J.W.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.22-25
    • /
    • 2007
  • The paper describes a power factor correction high efficiency PWM single-phase rectifier. Its good characteristics such as simple circuit structure, simple PWM control, low switch stress, and low VAR rating of commutation circuits make the proposed rectifier very suitable for various unidirectional power applications. In particular, the design guide line is suggested to make the circuit design of the proposed rectifier easy and fast.

  • PDF