• Title/Summary/Keyword: High Performance Control

Search Result 6,178, Processing Time 0.033 seconds

Robust Sinusoidal Tracking of High Performance Torsional Plants

  • Oloomi, Hossein M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1581-1586
    • /
    • 2004
  • In this paper, we study the tracking performance of a torsion disk system where the plant is required to track a triangular-type command signal with a small steady state error and delay. We investigate the tracking performance of the traditional inner/outer loop approach and underline its limitations in high performance applications. We then design a more advanced controller using the mixed sensitivity robust control approach and show that the tracking performance of the system can be improved substantially. The success of the design, even for the case of lightly damped plants such as the one considered in this paper, is largely the result of the proper weights selection used in the mixed sensitivity design. The main contribution of this paper is, therefore, the development of design guidelines for the weights selection when accurate tracking of periodic reference signals are desired.

  • PDF

Motor Parameter Measurement for High Performance Vector Control of an induction Motor (유도전동기의 고성능 벡터 제어를 위한 유도전동기 정수 측정)

  • Han, Sang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.126-131
    • /
    • 2015
  • The accuracy of motor parameter measurement is necessary to improve the performance of vector control of an induction motor. The rotor time constant affects the performance of controller and also the resistance and leakage inductance of stator are very important design parameters of current and speed controller. In this paper a new modified motor parameter measurement methods for high performance speed control of vector control of an induction motor are proposed.

Robust Current Tracking Control of Switched Reluctance Motors (Switched Reluctance Motor의 견실한 전류추적 제어기 설계)

  • Kim, Chang-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.218-228
    • /
    • 2001
  • The switched reluctance motor(SRM) has been increasingly used in high-performance servo applications such as electric vehicles, aircraft, and direct-drive robots. The dynamic equations of SRMs are, however, highly nonlinear and this makes it difficult to control SRMs with high performance. In this paper, we propose a new robust current tracking controller for SAMs which can compensate the nonlinear characteristics of SRM(i.e., back-emf and inductance) completely and hence shows perfect tracking performance even with an arbitrary small current control loop gain. Furthermore, even in case that there exist some model uncertainties, our current controller guarantees that the stator currents can track the reference current commands with sufficiently small tracking errors. In order to justify our work, we present the tracking performance analysis and some simulation results.

  • PDF

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

Direct Torque Control System of a Reluctance Synchronous Motor Using a Neural Network

  • Kim Min-Huei
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • This paper presents an implementation of high performance control of a reluctance synchronous motor (RSM) using a neural network with a direct torque control. The equivalent circuit in a RSM, which considers iron losses, is theoretically analyzed. Also, the optimal current ratio between torque current and exiting current is analytically derived. In the case of a RSM, unlike an induction motor, torque dynamics can only be maintained by controlling the flux level because torque is directly proportional to the stator current. The neural network is used to efficiently drive the RSM. The TMS320C3l is employed as a control driver to implement complex control algorithms. The experimental results are presented to validate the applicability of the proposed method. The developed control system shows high efficiency and good dynamic response features for a 1.0 [kW] RSM having a 2.57 ratio of d/q.

Effect of High Dietary Carbohydrate on the Growth Performance and Physiological Responses of Juvenile Wuchang Bream, Megalobrama amblycephala

  • Zhou, C.P.;Ge, X.P.;Liu, B.;Xie, J.;Miao, L.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1598-1608
    • /
    • 2013
  • An optimum dietary carbohydrate content is important for maximum fish growth. In this study, we fed Wuchang bream (Megalobrama amblycephala) with either control diet (30.42%) or high carbohydrate diet (52.92%) for 90 d. Fish were fed to apparent satiation three times daily in an aquarium with automatic temperature control and circulated water. Growth performance, plasma biochemical parameters, hepatic morphology and enzyme activities were determined. It was shown that compared to fish fed control diet, fish fed high carbohydrate diet had higher plasma triglyceride and cortisol levels for d 90, and lower alkaline phosphatase level for d 45, lower hepatic superoxide dismutase and total antioxidative capacity for d 90, higher malondialdehyde for d 45 and glycogen content for d 45 and 90 (p<0.05). Histological and transmission electron microscopy studies showed that hepatocytes of fish fed high carbohydrate diet contained large lipid droplets, causing displacement of cellular organelles to periphery of hepatocytes. The relative level of hepatic heat shock protein 70 (HSP70) mRNA of Wuchang bream fed high carbohydrate diet was significantly higher than that of fish fed the control diet for 90 d (p<0.05). These changes led to decreased specific growth rate and increased feed conversion ratio (p<0.05). Upon hypoxia challenge, fish fed high carbohydrate diet had higher cumulative mortality than those fed the control diet (p<0.05). These results suggested that high dietary carbohydrate (52.92%) was detrimental to the growth performance and health of Wuchang bream.

High Performance Speed Control of IPMSM Drive using Recurrent FNN Controller (순환 퍼지뉴로 제어기를 이용한 IPMSM 드라이브의 고성능 속도제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1700-1707
    • /
    • 2011
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. Since the fuzzy neural network(FNN) is recognized general approximate method to control non-linearities and uncertainties, the development of FNN control systems have also grown rapidly. The FNN controller is compounded of fuzzy and neural network. It has an advantage that is the robustness of fuzzy control and the ability to adapt of neural network. However, the FNN has static problem due to their feed-forward network structure. This paper proposes high performance speed control of IPMSM drive using the recurrent FNN(RFNN) which improved conventional FNN controller. The RFNN has excellent dynamic response characteristics because of it has internally feed-back structure. Also, this paper proposes speed estimation of IPMSM drive using ANN. The proposed method is analyzed and compared to conventional FNN controller in various operating condition such as parameter variation, steady and transient states etc.

An Improved Multi-Tuned Filter for High Power Photovoltaic Grid-Connected Converters Based on Digital Control

  • Sun, Guangyu;Li, Yongli;Jin, Wei
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.160-170
    • /
    • 2018
  • For high power photovoltaic (PV) grid-connected converters, high order filters such as multi-tuned filters and Traps+RC filters with outstanding filtering performance have been widely researched. In this paper, the optimization of a multi-tuned filter with a low damping resistance and research on its corresponding control scheme have been combined to improve the performance of the proposed filter. Based on the characteristics of the switching harmonics produced by PWM, the proposed filter is optimized to further improve its filtering performance. When compared with the more common Traps+RC filter, the advantages of the proposed filter with low damping resistances in attenuating the major switching harmonics have been demonstrated. In addition, a simpler topology and reduced power loss can be achieved. On the other hand, to make the implementation of the proposed filter possible, on the base of the unique frequency response characteristic of the proposed filter, a digital single-loop control scheme has been proposed. This scheme is a simple and effective means to suppress the resonance peak caused by a lack of damping. Therefore, a smaller volume, better efficiency of the proposed filter, and easy implementation of the corresponding control scheme can be realized. Finally, the superiority of the proposed filter topology and control scheme is verified in experiments.

Development of a Test Facility for Cold-air Performance of Small Axial Turbine (소형 축류터빈의 상온 성능시험기 개발)

  • 손창민;차봉준;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1780-1786
    • /
    • 1995
  • The main goal of the present study is to establish the techniques and methodolgies of turbine performance test through evaluating the objective turbine test piece, and checking the reliability of the self-developed test facility by performing a series of turbine tests under ambient temperature condition. A high speed coupling, a lubrication system and a test bed of the test facility were modified through a series of preliminary test in order to reduce the vibration and oil leakage. The flowrate control of the test facility and data acquisition were accomplished by using a software called "Labview" The measurement of shaft horse power and control of rotational speed according to the conditions of turbine rotation were performed by a separate system. The preliminary evaluation of the measured data suggests that the developed test facility and the test technique can be used reliably for the performance test of turbines with the minor improvement.provement.

Mixed mode exciting resonant inverter and control IC applicable to high Performance electronic ballast (고성능 전자식 안정기에 적합한 공진형 인버터의 혼합형 구동방식과 제어 IC)

  • Ryoo, Tae-Ha;Chae, Gyun;Hwang, Jong-Tae;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2786-2788
    • /
    • 1999
  • In this paper, a mixed mode exciting resonant inverter topology applicable to high performance electronic ballast is presented. Mixed mode exciting technique combines the attractive features of self exciting resonant inverter with those of external exciting one. The control IC is designed and manufactured by using a 0.8um CMOS process for 5V operation and has only 8 pins. This performs the operations of filament preheating, dimming control, output power regulation and protections. The mixed mode exciting resonant inverter with control IC has very simple structure, high performance and expensive manufacturing cost.

  • PDF