DOI QR코드

DOI QR Code

Effect of High Dietary Carbohydrate on the Growth Performance and Physiological Responses of Juvenile Wuchang Bream, Megalobrama amblycephala

  • Zhou, C.P. (Wuxi Fisheries College, Nanjing Agricultural University) ;
  • Ge, X.P. (Wuxi Fisheries College, Nanjing Agricultural University) ;
  • Liu, B. (Wuxi Fisheries College, Nanjing Agricultural University) ;
  • Xie, J. (Wuxi Fisheries College, Nanjing Agricultural University) ;
  • Miao, L.H. (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences)
  • Received : 2012.11.26
  • Accepted : 2013.02.27
  • Published : 2013.11.01

Abstract

An optimum dietary carbohydrate content is important for maximum fish growth. In this study, we fed Wuchang bream (Megalobrama amblycephala) with either control diet (30.42%) or high carbohydrate diet (52.92%) for 90 d. Fish were fed to apparent satiation three times daily in an aquarium with automatic temperature control and circulated water. Growth performance, plasma biochemical parameters, hepatic morphology and enzyme activities were determined. It was shown that compared to fish fed control diet, fish fed high carbohydrate diet had higher plasma triglyceride and cortisol levels for d 90, and lower alkaline phosphatase level for d 45, lower hepatic superoxide dismutase and total antioxidative capacity for d 90, higher malondialdehyde for d 45 and glycogen content for d 45 and 90 (p<0.05). Histological and transmission electron microscopy studies showed that hepatocytes of fish fed high carbohydrate diet contained large lipid droplets, causing displacement of cellular organelles to periphery of hepatocytes. The relative level of hepatic heat shock protein 70 (HSP70) mRNA of Wuchang bream fed high carbohydrate diet was significantly higher than that of fish fed the control diet for 90 d (p<0.05). These changes led to decreased specific growth rate and increased feed conversion ratio (p<0.05). Upon hypoxia challenge, fish fed high carbohydrate diet had higher cumulative mortality than those fed the control diet (p<0.05). These results suggested that high dietary carbohydrate (52.92%) was detrimental to the growth performance and health of Wuchang bream.

Keywords

References

  1. Amoah, A., S. D. Coyle, C. D. Webster, R. B. M Durborrow, L. A. Bright, and J. H. Tidwell. 2008. Effects of graded levels of carbohydrate on growth and survival of largemouth bass, Micropterus salmoides. J. World Aquac. Soc. 39:397-405. https://doi.org/10.1111/j.1749-7345.2008.00168.x
  2. Arnesen, P., A. Krogdahl, and A. Sundby. 1995. Nutrient digestibilities, weight gain and plasma and liver levels of carbohydrate in Atlantic salmon (Salmo salar, L.) fed diets containing oats and maize. Aquac. Nutr. 1:151-158. https://doi.org/10.1111/j.1365-2095.1995.tb00039.x
  3. Barton, B. A. and G. K. Iwama. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann. Rev. Fish Dis. 1:3-26. https://doi.org/10.1016/0959-8030(91)90019-G
  4. Basu, N., A. E. Todgham, P. A. Ackerman, M. R. Bibeau, K. Nakano, P. M. Schulte, and G. K. Iwama. 2002. Heat shock protein genes and their functional significance in fish. Gene 295:173-183. https://doi.org/10.1016/S0378-1119(02)00687-X
  5. Bergot, F. 1979. Carbohydrate in rainbow trout diets: effects of the level and source of carbohydrate and the number of meals on growth and body composition. Aquaculture 18:157-167. https://doi.org/10.1016/0044-8486(79)90028-0
  6. Bessey, O. A., O. H. Lowry, and M. J. Brock. 1946. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 164:321-329.
  7. Brauge, C., F. Medale, and G. Corraze. 1994. Effect of dietary carbohydrate levels on growth, body composition and glycemia in rainbow trout, Oncorhynchus mykiss, reared in seawater. Aquaculture 123:109-120. https://doi.org/10.1016/0044-8486(94)90123-6
  8. Bunch, E. C. and I. Bejerano. 1997. The effect of environmental factors on the susceptibility of hybrid tilapia Oreochromis niloticus.Oreochromis aures to streptococcosis. Israel J. Aquac. 49:67-76.
  9. Caballero, M. J., G. Lopez-Calero, J. Socorro, F. J. Roo, M. S. Izquierdo, and A. J. Fernandez. 1999. Combined effect of lipid level and fish meal quality on liver histology of gilthead seabream (Sparus aurata). Aquaculture 179:277-290. https://doi.org/10.1016/S0044-8486(99)00165-9
  10. Chen, W. W., L. R. Cui, and C. F. Yang. 2006. The study on Huangqi's protective role of lipid peroxidation injury during renal ischemia reperfusion in rats. Journal of Qiqihar Medical College 27:1666-1667.
  11. Choi, I., D. W. Lehmann, C. A. Harms, and J. M. Law. 2007. Acute hypoxia-reperfusion triggers immunocompromise in Nile Tilipa. J. Aquat. Anim. Health. 19:128-140. https://doi.org/10.1577/H06-010.1
  12. Clark, P. and C. Hales. 1994. How to measure plasma insulin. Diabetes/Metabolism Rev. 10:79. https://doi.org/10.1002/dmr.5610100203
  13. Cooper, R. U., L. M. Clough, M. A. Farwell, and T. L. West. 2002. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. J. Exp. Mar. Biol. Ecol. 279:1-20. https://doi.org/10.1016/S0022-0981(02)00329-5
  14. Dabrowski, K. 1990. Assay of ascorbic phosphate and bioavailability of ascorbic mono- and poly-phosphates. J. Sci. Food Agric. 52:409-420. https://doi.org/10.1002/jsfa.2740520314
  15. Enes, P., S. Panserat, S. Kaushik, and A. Oliva-Teles. 2008. Growth performance and metabolic utilization of diets with native and waxy maize starch by gilthead sea bream (Sparus aurata) juveniles. Aquaculture 274:101-108. https://doi.org/10.1016/j.aquaculture.2007.11.009
  16. Enes, P., S. Panserat, S. Kaushik, and A. Oliva-Teles. 2006a. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp. Biochem. Physiol. Part A. Mol. Integr. Physiol. 143:89-96. https://doi.org/10.1016/j.cbpa.2005.10.027
  17. Enes, P., S. Panserat, S. Kaushik, and A. Oliva-Teles. 2006b. Rapid metabolic adaptation in European sea bass (Dicentrarchus labrax) juveniles fed different carbohydrate sources after heat shock stress. Comp. Biochem. Physiol. Part A. Mol Integr. Physiol. 145:73-81. https://doi.org/10.1016/j.cbpa.2006.05.002
  18. Ellis, A. E. 1981. Stress and the modulation of defence mechanisms in fish. In: Pickering AD, editor. Stress in fish. London/New York: Academic Press, pp. 147-69.
  19. Erfanullah, A. K. J. 1995. Protein-sparing effect of dietary carbohydrate in diets for fingerling Labeo rohita. Aquaculture 136:331-339. https://doi.org/10.1016/0044-8486(95)00056-9
  20. Evans, J. J., C. A. Shoemaker, and P. H. Klesius. 2003. Effects of sublethal dissolved oxygen stress on blood glucose and susceptibility to Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. J. Aquat. Anim. Health 15:202-208. https://doi.org/10.1577/H03-024
  21. Fletcher, T. C. 1981. Dietary effects on stress and health. In: Ed. G. K. Iwama, A. D. Pickering, J. P. Sumpter, C. B. Schreck. editors. London/New York: Academic Press, pp. 147-169.
  22. Fletcher, T. C. 1997. Dietary effects on stress and health. In: Fish Stress and Health in Aquaculture (Ed. G. K. Iwama, A. D. Pickering, J. P. Sumpter, C. B. Schreck). Cambridge Univ. Press, Cambridge, UK, pp. 223-246.
  23. Fu, S. J. and X. J. Xie. 2005. Effect of dietary carbohydrate levels on growth performance in Silurus meridionalis Chen. Acta Hydrobiol Sin. 29:393-398.
  24. Gao, W., Y. J. Liu, L. X. Tian, K. S. Mai, G. Y. Liang, H. J. Yang, M. Y. Huai, and W. J. Luo. 2010. Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella). Aquac. Nutr. 16:327-333.
  25. Ge, X. P., B. Liu, J. Xie, J. H. Yu, Y. K. Tang, and T. T. Wu. 2007. Effect of different carbohydrate levels of dietary on growth, plasma biochemical indices and hepatic pancreas carbohydrate metabolic enzymes in top mouth culter (Erythroculter ilishaeformis Bleeker). J. Nanjing Agric. Univ. 30:88-93.
  26. Gu, J., J. H. Gong, Y. B. Yin, and J. Li. 1995. Effects of intermittent hyperbaric oxygen exposure and oxygen convulsions on a trioxidant enzyme activity and lipid peroxide contents in rats. Chinese J. Nautr. Med. 2:31-34.
  27. He, S. X., J. L. Xu, G. Zhao, Y. L. Wang, H. Fu, H. X. Li, and X. M. Chang. 2007. Effects of Salvia miltiorrhiza bunge injection on the status of lipid peroxidation in liver cirrhosis patients with massive upper gastrointestinal hemorrhage. World Chinese J. Digestol. 15:181-184.
  28. Hemre, G. I., G. Lambertsen, and O. Lie. 1991. The effect of dietary carbohydrate on the stress response in cod (Gadus morhua). Aquaculture 95:319-328. https://doi.org/10.1016/0044-8486(91)90097-Q
  29. Hemre, G. I., T. P. Mommsen, and A. Krogdahl. 2002. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr. 8:175-194. https://doi.org/10.1046/j.1365-2095.2002.00200.x
  30. Hemre, G. I., K. Sandnes, O. Lie, and R. Waagbo. 1995. Blood chemistry and organ nutrient composition in Atlantic salmon, Salmo salar L., fed graded amounts of wheat starch. Aquac. Nutr. 1:37-42. https://doi.org/10.1111/j.1365-2095.1995.tb00033.x
  31. Hilton, J. W., E. M. Plisetskaya, and J. F. Leatherland. 1987. Does oral 3,5,3′-triiodo-l-thyronine affect dietary glucose utilization and plasma insulin levels in rainbow trout (Salmo gairdneri)? Fish Physiol. Biochem. 4:113-120. https://doi.org/10.1007/BF02110878
  32. Iwama, G. K., A. D. Pickering, J. P. Sumpter, and C. B. Schreck. 1997. Fish Stress and Health in Aquaculture. Society for Experimental Biology Seminar Series, vol. 62. Society for Experimental Biology, Great Britain, pp. 278.
  33. Jauncey, K. 1982. Carp (Cyprinus carpio L.) nutrition - a review. In: Recent advances in aquaculture (Ed. J. F. Muir, R. J. Roberts). Croom Helm Ltd, London, pp. 215-263.
  34. Ke, H. 1975. An excellent freshwater food fish, Megalobrama amblycephala, and its propagating and culturing. Acta Hydrobiol Sin. 5:293-312.
  35. Ke, H. 1986. Cultivation of blunt snout bream (Megalobrama amblycephala) in China. Fisheries Science and Technology Information 5: 1-5.
  36. Krogdahl, A., G. I. Hemre, and T. P. Mommsen. 2005. Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac. Nutr. 11:103-122. https://doi.org/10.1111/j.1365-2095.2004.00327.x
  37. Kumar, S., N. P. Sahu, A. K. Pal, D. Choudhury, S. Yengkokpam, and S. C. Mukherjee. 2005. Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohita juveniles. Fish. Shellfish Immunol. 19: 331-344. https://doi.org/10.1016/j.fsi.2005.03.001
  38. Lall, S. P. 1991. Salmonid nutrition and feed production. In: Proceedings of the special session on salmonid aquaculture (Ed. R. H. Cook and W. Pennel). World Aquaculture Society, Los Angeles, CA, pp. 107-123.
  39. Li, X. F., W. B. Liu, Y. Y. Jiang, H. Zhu, and X. P. Ge. 2010. Effects of dietary protein and lipid levels in practical diets on growth performance and body composition of blunt snout bream (Megalobrama amblycephala) fingerlings. Aquaculture 303:65-70. https://doi.org/10.1016/j.aquaculture.2010.03.014
  40. Li, X. F., Y. Y. Jiang, W. B. Liu, and X. P. Ge. 2012. Protein-sparing effect of dietary lipid in practical diets for blunt snout bream (Megalobrama amblycephala) fingerlings: effects on digestive and metabolic responses. Fish Physiol. Biochem. 38:529-541. https://doi.org/10.1007/s10695-011-9533-9
  41. Liu, B., X. P. Ge, J. Xie, P. Xu, Y. J. He, Y. T. Cui, J. H. Ming, Q. L. Zhou, and L. K. Pan. 2012. Effects of anthraquinone extract from Rheum officinale Bail on the physiological responses and HSP70 gene expression of Megalobrama amblycephala under Aeromonas hydrophila infection. Fish Shellfish Immunol. 32:1-7. https://doi.org/10.1016/j.fsi.2011.02.015
  42. Liu, B., J. Xie, Y. T. Su, J. H. Yu, Y. K. Tang, and X. P. Ge. 2008. Effect of high carbohydrate levels of dietary on growth, GK activities and GK mRNA levels in top mouth culter (Erythroculter ilishaeformis Bleeker). Acta Hydrobiol Sin. 1: 47-53.
  43. Liu, M. Z., W. L. Shi, C. W. Zhu, M. Y. Lu, G. L. Wang, and F. Q. Wang. 1992. The effect of dietary lipid level on the growth of blunt snout bream (Megalobrama amblycephala) fingerling. Journal of Fisheries of China 4:330-336.
  44. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using Real-time quantitative PCR and the 2-..CT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  45. Luo, Y. P. and X. J. Xie. 2010. Effects of high carbohydrate and high lipid diets on growth, body composition and glucose metabolism in southern catfish at two temperatures. Aquac. Res. 41:431-437.
  46. Marklund, S. and G. Marklund. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47:469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  47. Maule, A. G., R. A. Tripp, S. L. Kaattari, and C. B. Schreck. 1989. Stress alters the immune function and disease resistance in Chinook salmon (Oncorhynchus tshawytscha). J. Endocrinol. 120:135-142. https://doi.org/10.1677/joe.0.1200135
  48. Miao, L. H., X. P. Ge, J. Xie, B. Liu, L. K. Pan, Q. L. Zhou, and R. L. Chen. 2011. Effect of high dietary carbohydrates on plasma cortisol levels and HSP70 expression in allogynogenetic crucian carp (Carassius auratus gibelio). J. Fishery Sci. China 18:819-827 (in Chinese, with English abstract).
  49. Ming, J. H., J. Xie, P. Xu, W. B. Liu, X. P. Ge, B. Liu, Y. J. He, Y. F. Cheng, Q. L. Zhou, and L. K. Pan. 2010. Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish Shellfish Immunol. 28:407-418. https://doi.org/10.1016/j.fsi.2009.11.018
  50. Mohapatra, M., N. P. Sahu, and A. Chaudhari. 2003. Utilization of gelatinized carbohydrate in diets in Labeo rohita fry. Aquac. Nutr. 9:189-196. https://doi.org/10.1046/j.1365-2095.2003.00243.x
  51. Ou, Y. M., X. Yu, and D. Y. Chen. 2001. Preliminary study on the oxygen consumption rate and asphyxiant point of Wuchang bream in Poyang Lake. Fisheries Science and Technology in Jiangxi 88:20-22.
  52. Pickering, A. D. and P. Pottinger. 1983. Seasonal and diet changes in plasma cortisol levels of the brown trout, Salmo trutta L. Gen. Comp. Endocrinol. 49:232-239. https://doi.org/10.1016/0016-6480(83)90139-9
  53. Pieper, A. and E. Pfeffer. 1980. Studies on the effect of increasing proportions of sucrose or gelatinized maize starch in diets for rainbow trout (Salmo gairdneri, R.) on the utilization of dietary energy and protein. Aquaculture 20:333-342. https://doi.org/10.1016/0044-8486(80)90094-0
  54. Plummer, P. 1987. Glycogen determination in animal tissues. An Introduction to Practical Biochemistry, 3rd edn. McGraw Hill Book, Maidenhead, pp. 332.
  55. Roberts, R. J. 1989. Nutritional pathology of teleosts. In: Fish pathology (Ed. R. J. Roberts). Bailliere Tindall, London, pp. 337-362.
  56. Roberts, R. J. and A. M. Bullock. 1989. Nutritional pathology. In: Fish nutrition (Ed. J. E. Halver). Academic Press Inc, London, pp. 423-473.
  57. Shi, W. L., J. Shan, M. Z. Liu, H. Yan, F. Q. Huang, X. W. Zhou, and L. Shen. 1988. A study of the optimum demand of protein by blunt snout bream (Megalobrama amblycephala). FAO library. Report No: FAO-FI.RAS/86/047; FAO-FI.NACA/WP/88/68. Accession No: 289611.
  58. Singh, R. K., A. K. Balange, and M. M. Ghughuskar. 2006. Protein sparing effect of carbohydrates in the diet of Cirrhinus mrigala (Hamilton, 1822) fry. Aquaculture 258:680-684.
  59. Strickland, J. D. A. and T. R. Parsons. 1968. A practical handbook of seawater analysis, Fish. Res. Board Can. Bull. 167:1-11.
  60. Tan, Q. S., F. Wang, S. Q. Xie, X. M. Zhu, W. Lei, and J. Z. Shen. 2009. Effect of high dietary starch levels on the growth performance, blood chemistry and body composition of gibelio crucian carp (Carassius auratus var. gibelio). Aquaculture Res. 40:1011-1018. https://doi.org/10.1111/j.1365-2109.2009.02184.x
  61. Vielma, J., J. Koskela, K. Ruohonen, I. Jokinen, and J. Kettunen. 2003. Optimal diet composition for European whitefish (Coregonus lavaretus): carbohydrate stress and immune parameter responses. Aquaculture 225:3-16. https://doi.org/10.1016/S0044-8486(03)00271-0
  62. Waagbo, R., J. Glette, K. Sandnes, and G. I. Hemre. 1994. Influence of dietary carbohydrate on blood chemistry, immunity and disease resistance in Atlantic salmon, Salmo salar L. J. Fish Dis. 17:245-258. https://doi.org/10.1111/j.1365-2761.1994.tb00220.x
  63. Wendelaar Bonga, S. E. 1997. The stress response in fish. Physiol Rev. 77:591-625.
  64. Wiik, R., K. Andersen, I. Ulgenes, and E. Egidius. 1989. Cortisol-induced increase in susceptibility of Atlantic salmon, Salmo salar together with effects on the blood cell pattern. Aquaculture 83:201-215. https://doi.org/10.1016/0044-8486(89)90033-1
  65. Wilson, R. P. 1994. Utilization of dietary carbohydrate by fish. Aquaculture 124:67-80. https://doi.org/10.1016/0044-8486(94)90363-8
  66. Xiang, R. and D. N. Wang. 1990. The improvement of the method spectrophotometer on lipid peroxides thiobarbituric acid. Progress in Biochemistry and Biophysics l7:241-242.
  67. Yang, G. H., Q. X. Dai, and L. D. Gu. 1989. Nutrition, feed formulation and high-yield aquaculture techniques of blunt snout bream (Megalobrama amblycephala). Feed Industry 1: 7-10.
  68. Zhou, J. B., Q. C. Zhou, S. Y. Chi, Q. H. Yang, and C. W. Liu. 2007. Optimal dietary protein requirement for juvenile ivory shell, Babylonia areolata. Aquaculture 270:186-192. https://doi.org/10.1016/j.aquaculture.2006.07.050
  69. Zhu, S. Q. 1995. Synopsis of Freshwater Fishes of China. Jiangsu Science and Technology Publishing House, Nanjing, Jiangsu, China.
  70. Zhou, W. Y., C. Y. Yu, J. Z. Liu, and G. H.Yang. 1997. Effects of quality and quantity of fat in diet on growth of blunt snout bream (Megalobrama amblycephala). Fish. Sci. Technol. Inf. 1:3-9.
  71. Zhou, Z., Z. Ren, H. Zeng, and B. Yao. 2008. Apparent digestibility of various feedstuffs for blunt nose black bream Megalobrama amblycephala Yih. Aquac. Nutr. 14:153-165. https://doi.org/10.1111/j.1365-2095.2007.00515.x
  72. Zou, Z., F. Yuan, and S. Chen. 1987. The optimal protein requirement of blunt nose black bream Megalobrama amblycephala Yih. Freshwater Fisheries 3:21-24.

Cited by

  1. Plasticity in growth of farmed and wild Atlantic salmon: is the increased growth rate of farmed salmon caused by evolutionary adaptations to the commercial diet? vol.16, pp.1, 2016, https://doi.org/10.1186/s12862-016-0841-7
  2. 1H NMR-based metabolomics approach reveals metabolic alterations in response to dietary imbalances in Megalobrama amblycephala vol.13, pp.2, 2017, https://doi.org/10.1007/s11306-016-1158-7
  3. ) subjected to varied starch and protein levels of diets vol.16, pp.2, 2017, https://doi.org/10.1080/1828051X.2016.1275953
  4. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala) vol.18, pp.1, 2017, https://doi.org/10.1186/s12864-017-4246-9
  5. Vegetable oil and carbohydrate-rich diets marginally affected intestine histomorphology, digestive enzymes activities, and gut microbiota of gilthead sea bream juveniles pp.1573-5168, 2019, https://doi.org/10.1007/s10695-018-0579-9
  6. fed a pelleted diet vol.40, pp.3, 2018, https://doi.org/10.2989/1814232X.2018.1503969
  7. Metabolite and gene expression profiles suggest a putative mechanism through which high dietary carbohydrates reduce the content of hepatic betaine in Megalobrama amblycephala vol.14, pp.7, 2018, https://doi.org/10.1007/s11306-018-1389-x
  8. Dietary carbohydrate levels and lipid sources modulate the growth performance, fatty acid profiles and intermediary metabolism of blunt snout bream Megalobrama amblycephala in an interactive pattern vol.481, pp.None, 2013, https://doi.org/10.1016/j.aquaculture.2017.08.034
  9. Gene expression patterns indicate that a high-fat-high-carbohydrate diet causes mitochondrial dysfunction in fish vol.62, pp.2, 2013, https://doi.org/10.1139/gen-2018-0159
  10. Changes in Physiology and Stress Responses of Pellet‐Reared Largemouth Bass Fed Live‐Forage Diets vol.82, pp.1, 2013, https://doi.org/10.1002/naaq.10120
  11. Histone Methylation of H3K4 Involved in the Anorexia of Carnivorous Mandarin Fish ( Siniperca chuatsi ) After Feeding on a Carbohydrate-Rich Diet vol.11, pp.None, 2020, https://doi.org/10.3389/fendo.2020.00323
  12. Nutritional quality of different starches in feed fed to juvenile yellow perch, Perca flavescens vol.26, pp.3, 2013, https://doi.org/10.1111/anu.13026
  13. Revealing Alteration in the Hepatic Glucose Metabolism of Genetically Improved Carp, Jayanti Rohu Labeo rohita Fed a High Carbohydrate Diet Using Transcriptome Sequencing vol.21, pp.21, 2013, https://doi.org/10.3390/ijms21218180
  14. Effects of dietary carbohydrate level on growth performance, innate immunity, antioxidant ability and hypoxia resistant of brook trout Salvelinus fontinalis vol.27, pp.1, 2021, https://doi.org/10.1111/anu.13186
  15. Benfotiamine ameliorates high‐carbohydrate diet‐induced hepatic oxidative stress, inflammation and apoptosis in Megalobrama amblycephala vol.52, pp.7, 2021, https://doi.org/10.1111/are.15164