• Title/Summary/Keyword: High Pass Filter

Search Result 606, Processing Time 0.028 seconds

A Control of the ZVZCS PS-FB DC/DC Converter using All-Pass Filter (전역통과필터를 이용한 ZVZCS PS-FB DC/DC 컨버터의 제어)

  • Cho, Han-Jin;Lee, Won-Cheol;Lee, Sang-Seok;Lee, Su-Won;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.152-159
    • /
    • 2010
  • High power density and power conversion efficiency have been required in the power converters according to the rapid growth of industry. In this context, the next generation High Speed Train(HST) requires power converter which has high-efficiency, high-performance and high-density. In this paper, the new control technique for battery charger used for the next generation HST is proposed. The phase shift ZVZCS converter is classified according to a resonant circuit which is located in the primary or secondary side. In this paper, The PWM switching technique using all-pass filter is proposed to control ZVZCS converter which has resonant circuit in the secondary side. ATmega_128 micro controller based in all-pass filter in substitute for phase shift IC is presented to have digital control. To verify the proposed topology, the simulation and experiment are performed by using PSIM software and 1[kW] experimental set-up.

Analysis of Novel Approach to Design of Ultra-wide Stopband Microstrip Low-Pass Filter Using Modified U-Shaped Resonator

  • Karimi, Gholamreza;Lalbakhsh, Ali;Dehghani, Khatereh;Siahkamari, Hesam
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.945-950
    • /
    • 2015
  • A novel microstrip low-pass filter is presented to achieve an ultra-wide stopband with 11 harmonic suppression and very sharp skirt characteristics. The filter is composed of a modified U-shaped resonator (which creates two fully adjustable transmission zeroes), a T-shaped resonator (which determines a cut-off frequency), and four radial stubs (which provide a wider stopband). The operating mechanism of the filter is investigated based on a proposed equivalent-circuit model, and the role of each section of the proposed filter in creating null points is theoretically discussed in detail. The presented filter with 3 dB cut-off frequency ($f_c=2.35GHz$) has been fabricated and measured. Results show that a relative stopband bandwidth of 164% (referred to as a 22 dB suppression) is obtained while achieving a high figure-of-merit of 15,221.

Correction of Accelerogram in Frequency Domain (주파수영역에서의 가속도 기록 보정)

  • Park, Chang Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.71-79
    • /
    • 1992
  • In general, the accelerogram of earthquake ground motion or the accelerogram obtained from dynamic tests contain various errors. In these errors of the accelerograms, there are instrumental errors(magnitude and phase distortion) due to the response characteristics of accelerometer and the digitizing error concentrated in low and high frequency components and random errors. Then, these errors may be detrimental to the results of data processing and dynamic analysis. An efficient method which can correct the errors of the accelerogram is proposed in this study. The correction of errors can be accomplished through four steps as followes ; 1) using an interpolation method a data form appropriate to the error correction is prepared, 2) low and high frequency errors of the accelerogram are removed by band-pass filter between prescribed frequency limits, 3) instrumental errors are corrected using dynamic equilibrium equation of the accelerometer, 4) velocity and displacement are obtained by integrating corrected accelerogram. Presently, infinite impulse response(IIR) filter and finite impulse response (FIR) filter are generally used as band-pass filter. In the proposed error correction procedure, the deficiencies of FIR filter and IIR filter are reduced and, using the properties of the differentiation and the integration of Fourier transform, the accuracy of instrument correction and integration is improved.

  • PDF

Design of A High Performance 1-D Discrete Wavelet Transform Filter Using Pipelined Architecture (파이프라인 구조를 이용한 고성능 1 차원 이산 웨이블렛 변환 필터 설계)

  • Park, Tae-Geun;Song, Chang-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.711-714
    • /
    • 2001
  • 본 논문에서는 파이프라인 구조를 이용하여 고성능 1 차원 이산 웨이블렛 변환 필터를 설계하였다. 각 레벨에서 입력이 다운샘플링(downsampling, decimation)되므로 각 레벨의 하드웨어를 폴딩(folding) 기법을 이용하여 곱셈기와 덧셈기를 공유함으로써 복잡도를 개선하였다. 즉, 제안한 구조에서는 레벨 2 와 레벨 3 에서 폴딩된 구조의 C.S.R(Circular Shift Register)곱셈기와 덧셈기를 사용함으로써 하드웨어 효율(hardware utilization)을 각 레벨에서 100%로 높일 수 있다. 또한, 홀수와 짝수의 샘플을 병렬로 입력함으로써 단일 입력의 시스템과 비교할 때, 동일 시간에 병렬화 만큼의 이득을 얻을 수 있었고, 필터 계수는 미러 필터(mirror filter)의 특성을 이용하여 쳐대한 고역 필터(high pass filter)와 저역 필터(low pass filter)의 계수들을 공유함으로써 곱셈기와 덧셈기의 수를 반으로 줄였다. 그리고 임계 경로(critical path)를 줄이기 위한 파이프라인 레지스터를 삽입하여 고성능 시스템을 구현하였다.

  • PDF

Stacked LTCC Band-Pass Filter for IEEE 802.11a (IEEE 802.11a용 적층형 LTCC 대역통과 여파기)

  • Lee Yun-Bok;Kim Ho-Yong;Lee Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.154-160
    • /
    • 2005
  • Microwave Otters are essential device in modem wireless systems. A compact dimension BPF(Band-pass Filter) for IEEE 802.11a WLAN service is realized using LTCC multi-layer process. To extrude 2-stage band-pass equivalent circuit, band-pass and J-inverter transform applied to Chebyshev low-pass prototype filter. Because parallel L-C resonator is complicate and hard to control the inductor characteristics in high frequency, the shorted $\lambda/4$ stripline is selected for the resonator structure. The passive element is located in the different layers connected by conventional via structure and isolated by inner GND. The dimension of fabricated stacked band-pass filter which is composed of six layers, is $2.51\times2.27\times1.02\;mm^3$. The measured filter characteristics show the insertion loss of -2.25 dB, half-power bandwidth of 220 MHz, attenuation at 5.7 GHz of -32.25 dB and group delay of 0.9 ns at 5.25 GHz.

Empirical mode decomposition based on Fourier transform and band-pass filter

  • Chen, Zheng-Shou;Rhee, Shin Hyung;Liu, Gui-Lin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.939-951
    • /
    • 2019
  • A novel empirical mode decomposition strategy based on Fourier transform and band-pass filter techniques, contributing to efficient instantaneous vibration analyses, is developed in this study. Two key improvements are proposed. The first is associated with the adoption of a band-pass filter technique for intrinsic mode function sifting. The primary characteristic of decomposed components is that their bandwidths do not overlap in the frequency domain. The second improvement concerns an attempt to design narrowband constraints as the essential requirements for intrinsic mode function to make it physically meaningful. Because all decomposed components are generated with respect to their intrinsic narrow bandwidth and strict sifting from high to low frequencies successively, they are orthogonal to each other and are thus suitable for an instantaneous frequency analysis. The direct Hilbert spectrum is employed to illustrate the instantaneous time-frequency-energy distribution. Commendable agreement between the illustrations of the proposed direct Hilbert spectrum and the traditional Fourier spectrum was observed. This method provides robust identifications of vibration modes embedded in vibration processes, deemed to be an efficient means to obtain valuable instantaneous information.

A Study on the Effect of Low Pass Filter and Drive Train Damper for the NREL 5MW Wind Turbine Control (NREL 5MW 풍력터빈 제어용 저주파 통과 필터와 드라이브 트레인 댐퍼의 효과 고찰)

  • Lim, Chae-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.443-451
    • /
    • 2021
  • It is essential to examine and analyze the power output and load responses together using real-world turbulent wind speeds. In this paper, the power controller and the drive train damper are simultaneously considered using the NREL 5MW wind turbine model, and the damage equivalent load(DEL) of the low speed shaft torque and power output responses according to the natural frequency of the second order low pass filter are simultaneously investigated. Numerical testing is carried out above rated wind speed using commercially available Bladed software. From the viewpoints of DEL reduction of the drive train shaft torque and power output responses, it is shown that the natural frequency of the low pass filter is appropriately about 6 to 10rad/s. And the reduction ratio of the DEL of the low-speed shaft torque decreases as the wind speed becomes higher, and it is confirmed that the reduction ratio is limited to about 20% at high wind speeds.

Single-Phase Active Power Filter for Higher-order Harmonic Current Compensation (고차 고조파 전류의 보상을 위한 단상 능동전력필터)

  • Sung, Ki-Suk;Woo, Myung-Ho;Song, Joong-Ho;Choy, Ick;Lim, Myo-Taeg
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.500-508
    • /
    • 2000
  • Basic design for single-phase active power filter, which aims at railway application provided with PWM-controlled converters, is comprehensively studied and its performance is presented in this paper. Active power filters are used to compensate railway signaling and public telecommunication interference due to the high-order harmonic currents generated in railway traction locomotives. A type of hybrid digital filter which is composed of low pass filter and high pass filter is proposed so that the desired harmonic reference current with accurate magnitude and phase shift can be extracted from catenary line current. A design criteria to determine input inductor L and output capacitor C is also described, considering voltage, current, PWM pattern, and switching frequency of the main converters. Finally, computer simulation and DSP-based experiments resulted from laboratory test are presented.

  • PDF

Lyot-Type High-Order Fiber Comb Filter Based on Polarization-Diversity Loop Structure (편광 상이 루프 구조 기반 Lyot형 고차 광섬유 빗살 필터)

  • Jo, Song-Hyun;Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.10-15
    • /
    • 2013
  • In this paper, we propose a Lyot-type optical fiber comb filter based on a polarization-diversity loop structure (PDLS), which has flat-top pass bands and multiwavelength switching capability. Generally, the PDLS can remove the dependency of the filter on input polarization. The proposed filter is composed of a polarization beam splitter, two half-wave plates (HWPs), and two polarization-maintaining fiber loops concatenated with a $60^{\circ}$ offset between their principal axes. By controlling two HWPs, it can operate in a flat-top band mode or a lossy flat-top band mode with an inherent insertion loss of ~3.49dB. In particular, flat-top bands can be interleaved in both modes, which cannot be realized in a Lyot-Sagnac comb filter based on a fiber coupler. Compared with Solc-type high-order comb filters with the same order, the proposed filter shows sharper transition between pass and stop bands.

A CMOS Active-RC channel selection Low-Pass Filter for LTE-Advanced system (LTE-Advanced 표준을 지원하는 CMOS Active-RC 멀티채널 Low-Pass Filter)

  • Lee, Kyoung-Wook;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.565-570
    • /
    • 2012
  • This paper has proposed a multi-channel low pass filter (LPF) for LTE-Advanced systems. The proposed LPF is an active-RC 5th chebyshev topology with three cut-off frequencies of 5 MHz, 10 MHz, and 40 MHz. A 3-bit tuning circuit has been adopted to prevent variations of each cut-off frequency from process, voltage, and temperature (PVT). To achieve a high cut-off frequency of 40 MHz, an operational amplifier used in the proposed filter has employed a PMOS cross-connection load with a negative impedance. A proposed filter has been implemented in a 0.13-${\mu}m$ CMOS technology and consumes 20.2 mW with a 1.2 V supply voltage.