• Title/Summary/Keyword: High Mach Number Flow

Search Result 133, Processing Time 0.024 seconds

DEPENDENCE OF WEIGHTING PARAMETER IN PRECONDITIONING METHOD FOR SOLVING LOW MACH NUMBER FLOW (낮은 Mach수유동 해석을 위한 Preconditioning 가중계수의 의존성)

  • An, Y.J.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • A dependence of weighting parameter in preconditioning method for solving low Mach number flow with incompressible flow nature is investigated. The present preconditioning method employs a finite-difference method applied Roe‘s flux difference splitting approximation with the MUSCL-TVD scheme and 4th-order Runge-Kutta method in curvilinear coordinates. From the computational results of benchmark flows through a 2-D backward-facing step duct it is confirmed that there exists a suitable value of the weighting parameter for accurate and stable computation. A useful method to determine the weighting parameter is introduced. With this method, high accuracy and stable computational results were obtained for the flow with low Mach number in the range of Mach number less than 0.3.

Preconditioned Compressible Navier- Stokes Algorithm for Low Mach Number Flows (예조건화 압축성 알고리즘에 의한 저마하수 유동장 해석기법)

  • Ko Hyun;Yoon Woong-Sup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.35-42
    • /
    • 1998
  • Time marching algorithms applied to compressible Navier-Stokes equation have a convergence problem at low Mach number. It is mainly due to the eigenvalue stiffness and pressure singularity as Mach number approaches to zero. Among the several methods to overcome the shortcomings of time marching scheme, time derivative preconditioning method have been used successfully. In this numerical analysis, we adopted a preconditioner of K.H. Chen and developed a two-dimensional, axisymmetric Navier-Stokes program. The steady state driven cavity flow and backward facing step flow problems were computed to confirm the accuracy and the robustness of preconditioned algorithm for low Mach number flows. And the transonic and supersonic flows insice the JPL axisymmetric nozzle internal flow is exampled to investigate the effects of preconditioning at high Mach number flow regime. Test results showed excellent agreement with the experimental data.

  • PDF

Hypersonic Viscous Interaction of Wedge Flows (극초음속 쐐기 유동의 Viscous Interaction)

  • Kim K. H.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.40-45
    • /
    • 1996
  • This paper discribes the viscous interaction of Hypersonic Wedge Flows using Roe FDS and AUSM+. For this purpose we developed the frozen and the equilibrium code and numerically simulated the viscous interaction by changing the surface temperature and the mach number. We used curve fitting data in NASA Reference Publication 1181, 1260 to calculate equilibrium properties. We compare the equilibrium flow with the frozen flow. We conclude that the mach number and the surface temperature are significant parameters, as the surface temperature and the mach number increase the viscous interaction becomes stronger, and we must consider high-temperature effects in hypersonic flow

  • PDF

Influences of Mach Number and Flow Incidence on Aerodynamic Losses of Steam Turbine Blade

  • Yoo, Seok-Jae;Ng, Wing Fai Ng
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.456-465
    • /
    • 2000
  • An experiment was conducted to investigate the aerodynamic losses of high pressure steam turbine nozzle (526A) subjected to a large range of incident angles ($-34^{\circ}\;to\;26^{\circ}$) and exit Mach numbers (0.6 and 1.15). Measurements included downstream Pitot probe traverses, upstream total pressure, and end wall static pressures. Flow visualization techniques such as shadowgraph and color oil flow visualization were performed to complement the measured data. When the exit Mach number for nozzles increased from 0.9 to 1.1 the total pressure loss coefficient increased by a factor of 7 as compared to the total pressure losses measured at subsonic conditions ($M_2<0.9$). For the range of incidence tested, the effect of flow incidence on the total pressure losses is less pronounced. Based on the shadowgraphs taken during the experiment, it' s believed that the large increase in losses at transonic conditions is due to strong shock/ boundary layer interaction that may lead to flow separation on the blade suction surface.

  • PDF

Issues and Solutions for the Numerical Analysis of High Mach Number Flow over a Blunt-Body (무딘 물체 주위 고마하수 유동해석의 문제점과 해결책)

  • 원수희;정인석;최정열;신재렬
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.18-28
    • /
    • 2006
  • Numerical analysis of high Mach number flow over a blunt-body poses many difficulties and various numerical schemes have been suggested to overcome the problems. However, the new schemes were used in the limited fields of applications because of the lack of field experience compared to more than 20 years old numerical schemes and the intricacies of modifying the existing code for the special application. In this study, some tips to overcome the numerical difficulties in solving the 3D high-Mach number flows by using Roe's scheme, the most widely used for the past 25 years and adopted in many commercial codes, were examined without a correction of the algorithm or a modification of the CFD code. The well-known carbuncle phenomena of Riemann solvers could be remedied even for an extremely high Mach number by applying the entropy fixing function and a unphysical solution could be overcome by applying a simply modified initial condition regardless of the entropy fixing and grid configuration.

Issues and Solutions of Roe Schemes for High Mach Number Flows (고마하수 유동에서 Roe 해법의 문제와 해결)

  • Won S. H.;Choi J. Y.;Jeung I. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.128-134
    • /
    • 2005
  • In the CFD area, the numerical analysis of high Mach number flow over a blunt-body poses many issues. Various numerical schemes have been developed to cover the issues, but the traditional schemes are still used widely due to the complexities of new schemes and intricacy of modifying the established codes. In the present study, the well-known Roe's FDS based on TVD-MUSCL scheme is used for the solution of very high Mach number three-dimensional flows posing carbuncle and non-physical phenomena in numerical analysis. A parametric study was carried out to account for the effects of the entropy fixing, grid configurations and initial condition. The carbuncle phenomena could be easily overcome by the entropy fixing, and the non-physical solution could be eliminated by the use of the modified initial condition regardless of entropy fixing and grid configurations.

  • PDF

Direct Simulation of Flow Noise by the Lattice Boltzmann Method Based on Finite Difference for Low Mach Number Flow (저 Mach 수 흐름에서 차분격자볼츠만법에 의한 유동소음의 직접계산)

  • Kang, Ho-Keun;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.804-809
    • /
    • 2003
  • In this study, 2D computations of the Aeolian tones for some obstacles (circular cylinder, square cylinder and NACA0012 airfoil) are simulated. First of all, we calculate the flow noise generated by a uniform flow around a two-dimensional circular cylinder at Re=150 are simulated by applying the finite difference lattice Boltzmann method (FDLBM). The third-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives, and the second-order-accurate Runge-Kutta scheme is applied for the time marching. The results show that we successively capture very small acoustic pressure fluctuation with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. To investigate the effect of the lattice dependence, furthermore, simulations of the Aeolian tones at the low Reynolds number radiated by a square cylinder and a NACA0012 airfoil with a blunt trailing edge at high incidence are also investigated.

  • PDF

ASYMMETRIC VORTEX CHARACTERISTICS AT A CONE UNDER SUPERSONIC HIGH ANGLE OF ATTACK FLOW (초음속 고받음각에서의 원뿔형 물체 주위의 비대칭 와류 특성 연구)

  • Park, M.Y.;Noh, K.H.;Park, S.H.;Lee, J.W.;Byun, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.8-13
    • /
    • 2008
  • A supersonic viscous flow over a five-degree half-angle cone is studied computationally with three-dimensional Navier-Stokes equations. Steady asymmetric solutions show that the asymmetric flow separation is caused by convective instability. The effects of angle of attacks, Reynolds numbers, and Mach numbers have been investigated and it is found that those factors affect the generation of the side force. The side force has the maximum value at ${\alpha}=22^{\circ}$, while over ${\alpha}=22^{\circ}$, asymmetric vortex becomes transient, which results in the unsteady shedding. At the angle of attack of 22 degrees, the side force increases with Reynolds number and decreases with Mach number. The increase of the side force stops over the critical Reynolds number for the present configuration.

Asymmetric Vortices around a Body at High Angle of Attack Subsonic Flow (아음속 유동하의 고 받음각 물체 주위의 비대칭 와류 특성 연구)

  • Park, Mee-Young;Kim, Wan-Sub;Lee, Jae-Woo;Park, Soo-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.33-38
    • /
    • 2008
  • Numerical investigation of asymmetric vortices at high angles of attack subsonic flow is performed using three-dimensional Navier-Stokes equations. A small bump has been carefully selected and attached near the nose of an ogive cylinder to simulate symmetric vortices. Selected bump shape does develop asymmetric vortices and is verified using Lamont's experimental results. By changing the angle of attack, Reynolds numbers, and Mach numbers, the characteristics of asymmetric vortices are observed. The angle of attack which contributes significantly to the generation of asymmetric vortices are over 30 degrees. By increasing Mach number and Reynolds number asymmetric vortices, hence the side forces show decreasing trend..

  • PDF

Development of Equilibium Flow Calculation Program Using a Modified Newtonian Method (수정 뉴토니안 방법을 이용한 평형유동 해석 프로그램 개발)

  • Choi, Jaehyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.483-491
    • /
    • 2016
  • A simple aerodynamic calculation program for high Mach number flow is developed by combining the modified Newtonian method with Tannehill's curve fits for the thermodynamic properties of air in equilibrium state. Aerodynamic characteristics for a parabolic nose are predicted and compared with CFD(Computational Fluid Dynamics) analysis results. Comparison shows good agreements, and the developed program is expected to be a practical tool for slender body aerodynamic calculation for high Mach number flow.