• Title/Summary/Keyword: High Frequency Resonant DC/DC Converter

Search Result 165, Processing Time 0.025 seconds

The Development of 1MHz wireless power transmission module using Helical ECR device (1MHz 헬리컬 ECR장치를 이용한 무선전력전송 모듈 개발)

  • YANG, Haeyoul;LIM, Seongjin;KIM, Sungwan;PARK, Jaehyun;KIM, Changsun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.62-63
    • /
    • 2011
  • The wireless power transfer system using electromagnetic resonance is consists of PFC circuit, LLC resonant converter, high frequency DC-AC inverter and ECR devices for wirelessly transmitting the power. The output voltage of the module with free input voltage is 1MHz, 230Vp-p. As a experimental result, the wireless power transmission is confirmed and it is varified the validity of the experiment.

  • PDF

Control Strategy of MMC-HVDC under Unbalanced Grid Voltage Conditions

  • Zhang, Jianpo;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1499-1507
    • /
    • 2015
  • High voltage direct current transmission based on modular multilevel converter (MMC-HVDC) is one of the most promising power transmission technologies. In this study, the mathematical characteristics of MMC-HVDC are analyzed in a synchronous rotational reference frame. A hybrid current vector controller based on proportional integer plus resonant is used to uniformly control the DC and double-base frequency AC currents under unbalanced grid voltage conditions. A corresponding voltage dependent current order limiter is then designed to solve the overcurrent problems that may occur. Moreover, the circulating current sequence components are thoroughly examined and controlled using a developed circulating current suppressor. Simulation results verify the correctness and effectiveness of the proposed control schemes.

The RLG's Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

A Study on the Contactless Power Supply System for Stokcer System (Stocker 시스템에 적용한 비접촉 전원장치에 관한 연구)

  • Hwang, Gye-Ho;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.148-156
    • /
    • 2007
  • This paper explains stocker system that is operated in the long distance and linear area. The power system of stocker system uses Contactless Power Supply(CPS) to reduce problems of particle generation. The circuit configuration of CPS is simplified than the conventional ones, and the prototype is designed for commercial product. To transfer output data(information) from crane(secondary vehicle system) of the CPS to Primary system optical modem and TMS320F243(DSP, TI) are used between primary and secondary. power system are used, and the output voltage is controlled by operating frequency modulation. This paper is applied to stocker system controlled as one to one communication between the moving part(secondary system) and fixed part(primary system) of crane using optical modem. The study makes one to multi communication between fixed part and moving part for the purpose of multi crane operation of stocker system and must be done in the future.

Electrical Properties of Multilayer Piezoelectric Transformer using PMN-PZN-PZT Ceramics (PMN-PZN-PZT 세라믹스를 이용한 적층형 압전변압기의 전기적 특성)

  • Lee, Chang-Bae;Yoo, Ju-Hyun;Paik, Dong-Soo;Kang, Jin-Kyu;Cho, Hong-Hee;Lee, Sung-Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.655-661
    • /
    • 2006
  • Dielectric and piezoelectric properties of PMN-PZT ceramics with a high mechanical quality factor$(Q_m)$ and a low temperature sintering temperature were investigated as a function of PZN substitution in order to develop multilayer piezoelectric transformer for AC-DC converter. Multilayer piezoelectric transformers were subsequently manufactured using the PMN-PZN-PZT ceramic offering the optimal behavior and then the electrical performance were invetigated. At the sintering temperature of $940^{\circ}C$, density, electromechanical coupling factor$(k_p)$, mechanical qualify factor$(Q_m)$ and dielectric constant$(\varepsilon_r)$ of 8 mol% PZN substituted specimen were $7.73g/cm^3$, 0.524, 1573 and 1455, respectively. The PZN substitution caused a increase in the dielectric constant and the electromechnical coupling factor. The voltage step-up ratio of multilayer piezoelectric transformer showed the maximum value at near the resonant frequency of 76.55 kHz and increased according to the increase of load resistance. The multilayer piezoelectric transformer with the output impedance coincided with the load resistance showed the temperature increase of less than $20^{\circ}C$ at the output power of 10 W. Based on the results, the manufactured multilayer transformer using the low temperature sintered PMN-PZN-PZT ceramics can be stably driven for both step-up and down transformers.