• Title/Summary/Keyword: High Fluidity Concrete

Search Result 306, Processing Time 0.029 seconds

A Study on the Mix Proportion of Self-Compacting High Performance Concrete (자기충전성 고성능 콘크리트의 배합에 관한 연구)

  • 이승한;한형섭;이원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.269-274
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. According to the experimental results, fluidity on W/C = 34% was satisfied within slump-flow 65$\pm$ 5cm and U-type self-compactability difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF

The properties of High Performance Concrete Using Fly Ash and Blast-Furnace Slag (플라이애쉬 및 고로슬래그를 사용한 고성능콘크리트의 특성)

  • 이승한;정용욱;박정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.275-280
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. By the results of this experiment, fluidity on W/C=34% was satisfied within slump-flow 65$\pm$5cm and U-type self-compacting difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF

A Study on Characteristics of Normal Strength Concrete adapted to Concrete Filled Steel Tube (콘크리트 충전강관구조(CFT) 적용을 위한 일반강도 콘크리트 물성에 관한 실험적 연구)

  • 강동현;강용학;정근호;이영도;이장오
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.46-51
    • /
    • 2001
  • As a rule, in case of CFT for high-rise building, high strength concrete is required since it should have high fluidity, segregation resistance and large proportion of cement per unit considering the fi11ing beneath the diaphragm. However, regarding the low-rise building under 20 stories, it is somewhat difficult to use high strength concrete. This is a fundamental study to develop a concrete with normal strength and high fluidity for CFT of low-rise building, whose purposes are in speculating several kinds of changes in concrete's characteristics through various experiments and offering basic documents for practicalization in si to and production through mock-up test.

  • PDF

A Factor of Fly Ash on Fluidity of Fly Ash Cement Paste (플라이 애시 시멘트 페이스트의 유동성에 미치는 플라이 애시의 인자)

  • 이승헌;김홍주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.153-158
    • /
    • 2000
  • This study was carried out in order to investigate the relationship roundness of fly ashes and fluidity of fly ash cement paste. electrostatic precipitator system in coal-fired power plant have many successive collection fields in the direction of flue gas travel. In experiment, the roundness of fly ashes collected from the same location had similar values regardless of the load or boiler, and they increased going from the 1st collection filed to third collection filed in the direction of gas movement. In considering the relation between roundness of fly ashes and fluidity of fly ash cement paste, it has a high correlation.

  • PDF

The Rheology of Cement Paste Using Polycarboxylate-Based Superplasticizer for Normal Strength-High Fluidity Concrete (보통강도 고유동 콘크리트용 PC계 고성능 감수제를 사용한 시멘트 페이스트의 레올로지 특성 평가)

  • Kong, Tae-Woong;Lee, Han-Seung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.276-286
    • /
    • 2021
  • General high fluidity concrete is the area of high strength concrete with a high amount of cement to secure the required fluidity and workability. Since most of the concrete structures currently used have normal strength, there is a limit to the practical expansion and practicality of use. Thus it is necessary to develop normal strength-high fluidity concrete with low binders that can be used not only in general buildings but also in special buildings, and can greatly reduce construction time and save labor costs. This requires to develop and apply the polycarboxylate-based superplasticizer. In this study, PCE was prepared for each combination of starting materials(WR, HB, RT) and the rheological properties of cement paste were analyzed using ringflow cone and a rotary viscometer. As a result, when PCE with a combination of WR 80%, HB 6.5%, and RT 13.5% was applied, the yield stress can be minimized while securing the plastic viscosity at level of the normal strength. In addition, high fluidity due to the high dispersion effect was confirmed.

A Fundamental Study on the Fluidity and Engineering Properties of High Flowing Concrete According to the Performance of Superplasticizing agents (고성능감수제의 성능에 따른 고유동콘크리트의 유동특성 및 공학적 특성에 관한 기초적 연구)

  • 강희관;김규용;송하영;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.316-320
    • /
    • 1996
  • It is now increasingly recognized that the fluid properties of superplasticized high flowing concrete can be affected by numerous parameters which characterize either the cement, the mineral or chemical admixture, the mix proportion. Particularly performance of superplasticizers used to enhance the workability and obviously plays a key role in the rtheology of fresh and engineering properties of hardened concrete. In this experiment, it is aimed to investigate and compare the each fluidities and engineering properties of high flowing concrete by performance in each 3 kinds of superplasticizers. And there is to aim the considering about fluidity and viscocity, hardened properties of hig flowing concrete.

  • PDF

The Fluidity Properties of High Strength Concrete adding Copper Slag as Mineral Admixture (동제련 슬래그를 혼입한 고강도 콘크리트의 유동특성에 관한 연구)

  • Lee, Dong-Un;Yoon, Jong-Jin;Kim, Dae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.271-279
    • /
    • 2016
  • This study examines the properties of high-fluidity concrete after adding copper slag as a mineral admixture. For this purpose, the replacement ratio of cement to copper slag was varied to 0, 10, 20, 30, 40, and 50%. A slump flow test, reach time slump flow of 500 mm, and a U-Box and O-lot test were conducted on the fresh concrete. The compressive strength of the hardened concrete was determined at 3, 7, 14 and 28 days. According to the test results, the workability, compaction, and compressive strength of the high-fluidity concrete increased when replacing 30% of the cement with copper slag. These parameters decreased for all material ages with more than 30% copper slag, which was the optimal mixture ratio.

The Quality Properties of Quaternary Component Blended High Fluidity Concrete Using Industrial By-products for Carbon Neutrality (탄소중립을 위한 산업부산물 활용 4성분계 고유동 콘크리트의 품질특성)

  • Yong-Jic, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.506-513
    • /
    • 2022
  • In this paper, as part of a study for carbon neutrality, the quality properties of quaternary component high-fluidity concrete, which significantly replaced up to 80 % of the cement usage by using three industrial by-products, were evaluated. As a result of the evaluation, even if a large amount of industrial by-products were replaced by more than 80 % of the amount of cement used, it was possible to obtain quality that satisfies the target performance in all concrete mix. In the case of flow properties, mechanical properties, and durability, compared to the existing standard concrete mix, the performance tends to decrease, but it is judged that the performance above the required performance level can be satisfied. When considered comprehensively, the quaternary component High-Fluidity Concrete with a large mixing amount of fine powder of blast furnace slag showed relatively good performance.