• Title/Summary/Keyword: High Energy Physics

Search Result 735, Processing Time 0.028 seconds

The Evaluation of Scattering Effects for Various Source Locations within a Phantom in Gamma Camera (감마카메라에서의 팬텀 내 선원 위치 변화에 따른 산란 영향 평가)

  • Yu, A-Ram;Lee, Young-Sub;Kim, Jin-Su;Kim, Kyeong-Min;Cheon, Gi-Jeong;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.216-224
    • /
    • 2009
  • $^{131}I$ is a radiological isotope being used widely for treatment of cancer as emitting gamma-ray and it is also applied to estimate the function of thyroid for its accumulation in thyroid. However, $^{131}I$ is more difficult to quantitate comapred to $^{99m}Tc$, because $^{131}I$ has multiple energy gamma-ray emissions compared to $^{99m}Tc$ which is a mono energetic gamma-ray source. Especially, scattered ray and septal penetration resulted by high energy gamma ray have a bad influence upon nuclear medicine image. The purpose of this study was to estimate scatter components depending on the different source locations within a phantom using Monte Carlo simulation (GATE). The simulation results were validated by comparing with the results of real experiments. Dual-head gamma camera (ECAM, Chicago, Illinois Siemens) with high energy, general-purpose, and parallel hole collimators (hole radius: 0.17 cm, septal thickness: 0.2 cm, length: 5.08 cm) was used in this experiment. The NaI crystal is $44.5{\times}59.1\;cm$ in height and width and 0.95 cm in thickness. The diameter and height of PMMA phantom were 16 cm and 15 cm, respectively. The images were acquired at 5 different locations of $^{131}I$ point source within the phantom and the images of $^{99m}Tc$ were also acquired for comparison purpose with low energy source. The simulation results indicated that the scattering was influenced by the location of source within a phantom. The scattering effects showed the same tendency in both simulation and actual experiment, and the results showed that the simulation was very adequate for further studies. The results supported that the simulation techniques may be used to generalize the scattering effects as a function of a point source location within a phantom.

  • PDF

Exploration of Optimal Multi-Core Processor Architecture for Physical Modeling of Plucked-String Instruments (현악기의 물리적 모델링을 위한 최적의 멀티코어 프로세서 아키텍처 탐색)

  • Kang, Myeong-Su;Choi, Ji-Won;Kim, Yong-Min;Kim, Jong-Myon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.281-294
    • /
    • 2011
  • Physics-based sound synthesis usually requires high computational costs and this results in a restriction of its use in real-time applications. This motivates us to implement the sound synthesis algorithm of plucked-string instruments using multi-core processor architectures and determine the optimal processing element (PE) configuration for the target instruments. To determine the optimal PE configuration, we evaluate the impacts of a sample-per-processing element (SPE) ratio that is defined as the amount of sample data directly mapped to each PE on system performance and both area and energy efficiencies using architectural and workload simulations. For the acoustic guitar, the highest area and energy efficiencies are achieved at a SPE ratio of 5,513 and 2,756, respectively, for the synthesis of musical sounds sampled at 44.1 kHz. In the case of the classical guitar, the maximum area and energy efficiencies are achieved at a SPE ratio of 22,050 and 5,513, respectively. In addition, the synthetic sounds were very similar to original sounds in their spectra. Furthermore, we conducted MUSHRA subjective listening test with ten subjects including nine graduate students and one professor from the University of Ulsan, and the evaluation of the synthetic sounds was excellent.

Study of 4π Compton Suppression Spectrometer by Monte Carlo Simulation (몬테카를로 시뮬레이션을 통한 4π 컴프턴 억제 분광기 연구)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.123-129
    • /
    • 2017
  • Compton suppression apparatus using the Compton scattering response, by inhibiting part of the spectrum Compton continuum Compton continuum in the area of the peak analysis of the gamma rays that enables a clearer device. In order to find out the geometry structure of high-purity germanium detector(HPGe) -NaI(TI) and to optimize the effect of movement, Monte Carlo simulation was used to grasp the behavioral characteristics of Compton suppression and compare several layout structures. And applied to the cylinder beaker used for the environmental measurement by using the efficiency according to the distance. For the low-energy source such as 81 keV, the Compton continuum is scarcely developed and the suppression effect is also insignificant because the scattering cross-section of the Compton effect is relatively low. In the spectrum for the remaining energy, it can be seen that the Compton continuum part is suppressed in a certain energy range. Compton suppression effect was not significantly different from positional shift. average reduction factor(ARF) value was about 1.08 for 81 keV and about 1.23 for 1332.4keV energy at the highest value. It can be seen that suppression over the Compton continuum region of the energy spectrum is a more appropriate arrangement. Therefore, it can be applied to various environmental sample measurement through optimized structure.

A Substorm Injection Event and the Radiation Belt Structure Observed by Space Radiation Detectors onboard Next Generation Small Satellite-1 (NEXTSat-1)

  • Yoo, Ji-Hyeon;Lee, Dae-Young;Kim, Eojin;Seo, Hoonkyu;Ryu, Kwangsun;Kim, Kyung-Chan;Min, Kyoungwook;Sohn, Jongdae;Lee, Junchan;Seon, Jongho;Kang, Kyung-In;Lee, Seunguk;Park, Jaeheung;Shin, Goo-Hwan;Park, SungOg
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.

Measurement of sonoluminescence intensity for evaluation of the amount of radical generated by ultrasonic cavitation (초음파 캐비테이션에 의해 생성되는 라디칼의 발생량 평가를 위한 소노루미네센스 발광강도의 측정)

  • Jungsoon Kim;Moojoon Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.50-56
    • /
    • 2023
  • The hydroxyl radical (·OH) and superoxide anion radical (·O2- ) generated by the shock wave generated during ultrasonic cavitation collapse in TiO2 suspension are highly useful because they can sterilize and disinfect. For practical use as a sterilization method without any chemicals, in this study, we proposed a method for evaluating the generation of radicals generated by high-intensity ultrasound emitted to titanium dioxide suspension. In the proposed method, the sonoluminescence phenomenon, which emits light by ultrasonic cavitation decay energy, was utilized, and the degree of radical generation was evaluated through the amount of light energy by sonoluminescence. As a result, even at a low concentration of titanium dioxide of 0.02 wt%, light energy 5 times higher than in the absence of titanium dioxide was received. After that, as the concentration increased by 0.1 wt%, the luminous intensity of sonoluminescence increased linearly by about 14.8 × 10-12 lm. Therefore, it was confirmed that the radicals generated by radiating high-intensity ultrasound to the titanium dioxide suspension increased linearly as the concentration of titanium dioxide increased within a given concentration range.

Acquisition of High Resolution Images and its Application using Synchrotron Radiation Imaging System (방사광 X-선을 이용한 고해상도 영상획득과 응용)

  • 홍순일;김희중;정해조;홍진오;정하규;김동욱;제정호;김보라;유형식
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • Synchrotron radiation (SR) has several advantages over convetional x-rays, including its phase, collimation, and high flux. A synchrotron radiation beamline 5C1 at Pohang Light Source (PLS) was recently built for imaging applications. We have shown that a SR imaging system is useful in imaging microscopic structures. SR with broad-band energy spectrum were adjusted to an object by Si wafers and their energy were approximately ranging from 6 keV to 30 keV. SR were passed through an object and finally transformed into visible lights by CdWO$_4$ scintillator screen. The visible lights which were reflected at an angle of 90 degrees by gold plated mirror were detected by a CCD camera and the image data were acquired using image acquisition system. A high-resolution phantom, capacitor, adult tooth, child tooth, cancerous breast tissue, and mouse lumbar vertebra were imaged with SR imaging system. The Objects were rotated within the field of view of the CCD detector, and their projection image data were obtained at 250 steps over 180 degrees rotation. Image reconstructions were carried out in a PC by using IDLTM(Research systems, Inc., US) program. The spatial resolution of the images acquired by the SR imaging system was measured with a high-resolution chart manufactured for several micrometer resolution. The specimens were also imaged with conventional x-ray radiography system to compare the image quality of radiography obtained with the SR imaging system. The results showed more structural details and high contrast images with SR imaging system than conventional x-ray radiography system. The SR imaging system may have a potential for imaging in biological researches, material applications, and clinical radiography.

  • PDF

Application of an imaging plate to relative dosimetry of clinical x-ray beams (Imaging Plate를 이용한 의료용 광자선의 선량측정)

  • 임상욱;여인환;김대용;안용찬;허승재;윤병수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.117-122
    • /
    • 2000
  • The IP(imaging plate) has been widely used to measure the two-dimensional distribution of incident radiation since it has a high sensitivity, reusability, a wide dynamic range, a high position resolution. Particularly, the easiness of acquiring digitized image using IP poses a strong merit because recent trend of data handling prefers image digitization. In order to test its usefulness in photon beam dosimetry, we measured the off-axis ratio(OAR) on portal planes and percent depth dose(PDD) within a phantom using IP, and compared the results with the data based on EGS4 Monte Carlo particle transport code, ion-chambers, conventional films. For the measurement, we used 6 MV X-rays, various field sizes. As a result, IP showed significant deviation from ion-chamber measurement: a significant overresponse, 100% greater than that of ion-chamber measurement at deep part of the phantom. Filtration of low-energy scattered photons at deep part of the phantom using 0.5 mm thick lead sheets did improve the result, only to the unacceptable extent. However, portal dose measurement showed possibilities of If as a dosimeter by showing errors less than 5%, as compared with film measurement.

  • PDF

Study on Optimization of Detection System of Prompt Gamma Distribution for Proton Dose Verification (양성자 선량 분포 검증을 위한 즉발감마선 분포측정 장치 최적화 연구)

  • Lee, Han Rim;Min, Chul Hee;Park, Jong Hoon;Kim, Seong Hoon;Kim, Chan Hyeong
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.162-168
    • /
    • 2012
  • In proton therapy, in vivo dose verification is one of the most important parts to fully utilize characteristics of proton dose distribution concentrating high dose with steep gradient and guarantee the patient safety. Currently, in order to image the proton dose distribution, a prompt gamma distribution detection system, which consists of an array of multiple CsI(Tl) scintillation detectors in the vertical direction, a collimator, and a multi-channel DAQ system is under development. In the present study, the optimal design of prompt gamma distribution detection system was studied by Monte Carlo simulations using the MCNPX code. For effective measurement of high-energy prompt gammas with enough imaging resolution, the dimensions of the CsI(Tl) scintillator was determined to be $6{\times}6{\times}50mm^3$. In order to maximize the detection efficiency for prompt gammas while minimizing the contribution of background gammas generated by neutron captures, the hole size and the length of the collimator were optimized as $6{\times}6mm^2$ and 150 mm, respectively. Finally, the performance of the detection system optimized in the present study was predicted by Monte Carlo simulations for a 150 MeV proton beam. Our result shows that the detection system in the optimal dimensions can effectively measure the 2D prompt gamma distribution and determine the beam range within 1 mm errors for 150 MeV proton beam.

The Effects of Metal Plate loaded on TLD chip in 6 MV Photon and 6 MeV Electron Beams (6 MV 광자선과 6 MeV 전자선 하에서 TLD 기판 위에 얹힌 금속 박막의 효과)

  • Kim, Sookil;Byungnim Min
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.41-46
    • /
    • 1999
  • There is necessity for making a smaller and more sensitive detector in small field sizes. This report assesses the suitability of metal-loaded thermoluminescent dosimeters for this purpose. Measurements were performed in the 6 MV photon and 6 MeV electron beams of a medical linear accelerator with LiF thermoluminescence dosimeters (TLD-100) embedded in solid water phantom. TLD-100 chips(surface area 3.2 $\times$ 3.2 $\textrm{mm}^2$) loaded with a metal plate(Tin or gold respectively) were used to enhance dose readings to TLD-100. Surface dose was measured for field size 10 $\times$ 10 $\textrm{cm}^2$ and 100 em SSD. Measurements have been made of the enhanced signal intensity and good linearity for absorbed dose with each metal. Using a 1 mm each metal on TLD-l00 in the beam increased the surface dose to 14% and 56% respectively for 6MV photon. In the case of 6 MeV electron, gold plate enhanced the TL response to 13%, but there is no difference for tin plate. The specific dose response of TLD-100 with thin metal plate increases with electron concentration of metal film, this is most likely due to increased electron scattered from the additional material with electron density higher than TLD-100. This emphasizes the role of TL dosimeters with metal as amplified dosimeters for therapeutic high energy x-ray beams. Due to the enhanced dose reading of TLD-100 with metal plate, it could be possible to develop smaller TL dosimeter with high sensitivity.

  • PDF

Educational Implications of Pre-Service Science Teachers' Education by Analysis of Connection between Learning Contents Presented in the High School 'Science' and in the Pre-Service Science Textbooks of College of Education (고등학교 융합형 과학의 학습내용과 사범대학 예비과학교사 교육내용과의 연관성 분석을 통한 예비과학교사교육에 대한 시사점 고찰)

  • Kim, Nam-Hui;Shim, Kew-Cheol
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.363-374
    • /
    • 2015
  • The purpose of this study is to investigate the learning contents presented in high school science and in pre-service science textbooks of college of education, and to examine educational implications for pre-service science teachers by analysing their connection to each other. High school science is called as 'convergence science.' Seven high school science textbooks and eleven science textbooks related to physics, chemistry, biological science, and earth science for pre-service teachers were selected to analyse learning contents. The relationship between high school science with those of college-level science textbooks for pre-service science teachers was found when the learning contents were compared. Science textbooks for pre-service science teachers have the biggest number of learning contents on the chapter 'Energy and Environment' of high school science. About 86.6% of learning contents of high school science were introduced on textbooks on science, but pre-service teachers should learn the remainder. The part of learning contents presented in high school science textbooks was higher than the college-level for pre-service science teachers. Moreover, the part of learning contents was included in Engineering & Technology. And these required a special teacher education. Accordingly, the results suggested that learning contents for high school science should be optimized and reduced. Also, various educational programs should be developed and educational curriculum for pre-service science teachers should be revised.