Study on Optimization of Detection System of Prompt Gamma Distribution for Proton Dose Verification

양성자 선량 분포 검증을 위한 즉발감마선 분포측정 장치 최적화 연구

  • Lee, Han Rim (Department of Nuclear Engineering, Hanyang University) ;
  • Min, Chul Hee (Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School) ;
  • Park, Jong Hoon (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Seong Hoon (Department of Radiation Oncology, Hanyang University Hospital) ;
  • Kim, Chan Hyeong (Department of Nuclear Engineering, Hanyang University)
  • Received : 2012.06.07
  • Accepted : 2012.08.02
  • Published : 2012.09.30

Abstract

In proton therapy, in vivo dose verification is one of the most important parts to fully utilize characteristics of proton dose distribution concentrating high dose with steep gradient and guarantee the patient safety. Currently, in order to image the proton dose distribution, a prompt gamma distribution detection system, which consists of an array of multiple CsI(Tl) scintillation detectors in the vertical direction, a collimator, and a multi-channel DAQ system is under development. In the present study, the optimal design of prompt gamma distribution detection system was studied by Monte Carlo simulations using the MCNPX code. For effective measurement of high-energy prompt gammas with enough imaging resolution, the dimensions of the CsI(Tl) scintillator was determined to be $6{\times}6{\times}50mm^3$. In order to maximize the detection efficiency for prompt gammas while minimizing the contribution of background gammas generated by neutron captures, the hole size and the length of the collimator were optimized as $6{\times}6mm^2$ and 150 mm, respectively. Finally, the performance of the detection system optimized in the present study was predicted by Monte Carlo simulations for a 150 MeV proton beam. Our result shows that the detection system in the optimal dimensions can effectively measure the 2D prompt gamma distribution and determine the beam range within 1 mm errors for 150 MeV proton beam.

양성자 치료에서 치료의 목표를 달성하고 환자의 안전을 제고하기 위해 인체 내 양성자 빔의 분포를 확인하는 것이 중요하다. 양성자 선량분포와 밀접한 관계가 있는 즉발감마선의 2차원 분포 측정을 위하여 본 연구팀에서는 다수의 CsI(Tl) 섬광체가 1차원 종형으로 배열된 검출기 배열과 집속장치 및 다채널 신호처리 장치로 이루어진 측정장치를 개발하고 있다. 이에 본 연구에서 몬테칼로 기반의 MCNPX 코드를 이용하여 최적화된 측정 장치를 설계하고자 하였다. 즉발감마선을 효과적으로 측정하기 위해 CsI(Tl) 섬광체의 크기를 $6{\times}6{\times}50mm^3$로 결정하였으며, 배경감마선의 영향을 최소화하고 빔의 진행방향에서 수직방향으로 발생하는 즉발감마선만 측정하기 위해 집속장치의 구멍 크기는 면적 $6{\times}6mm^2$, 길이 150 mm로 최적화되었다. 150 MeV 양성자 빔에 대한 성능 예측 전산모사연구를 수행한 결과, 본 연구에서 최적화된 측정 장치를 통해 즉발감마선 2차원 분포를 측정할 수 있었으며, 1 mm 오차범위에서 양성자 빔의 비정을 결정할 수 있었다. 이를 바탕으로 현재 다채널의 신호처리 장치를 개발하고 있으며 실제 양성자 빔을 이용한 즉발감마선 분포측정을 통해 측정 장치의 성능을 검증할 것이다.

Keywords

References

  1. Wilson R: Radiological use of fast protons. Radiology 47: 48791 (1946)
  2. Weyrather WK, Debus J: Particle beams for cancer therapy. Clin Oncol 15:23-28 (2003) https://doi.org/10.1053/clon.2002.0185
  3. España S, Paganetti H: Uncertainties in planned dose due to the limited voxel size of the planning CT when treating lung tumors with proton therapy. Phys Med Biol 56:3843-3856 (2011) https://doi.org/10.1088/0031-9155/56/13/007
  4. Parodi K, Bortfeld T: Potential application of PET in quality assurance of proton therapy. Phys Med Biol 45:151-156 (2000) https://doi.org/10.1088/0031-9155/45/11/403
  5. Parodi K, Paganetti H, Cascio E, et al: PET/CT imaging for treatment verification after proton therapy - a study with plastic phantoms and metallic implants. Med Phys 34:419-435 (2007) https://doi.org/10.1118/1.2401042
  6. Surti S, Zou W, Daube-Witherspoon ME, McDonough J, Karp JS: Design study of an in situ PET scanner for use in proton beam therapy. Phys Med Biol 56:2667-2685 (2011) https://doi.org/10.1088/0031-9155/56/9/002
  7. Stichelbaut F, Jongen Y: Verification of the proton beam position in the patient by the detection of prompt $\gamma$-rays emission. Meeting of 39th Particle Therapy Co-Operative Group. San Francisco, California, USA (2003)
  8. Min CH, Kim CH, Youn MY, Kim JW: Prompt gamma measurements for locating the dose fall-off region in the proton therapy. Appl Phys Lett 89:183517 (2006) https://doi.org/10.1063/1.2378561
  9. Testa E, Bajard M, Chevallier M, et al: Monitoring the Bragg peak location of 73MeV/u carbon ions by means of prompt $\gamma$-ray measurements. Appl Phys Lett 93:093506 (2008) https://doi.org/10.1063/1.2975841
  10. Park MS, Lee W, Kim JM: Estimation of proton distribution by means of three-dimensional reconstruction of prompt gamma rays. Appl Phys Lett 97:153705 (2010) https://doi.org/10.1063/1.3502612
  11. Kabuki S, Ueno K, Kurosawa S, et al: Study on the use of electron-tracking Compton gamma-ray camera to monitor the therapeutic proton dose distribution in real time. IEEE Nuclear Science Symposium Conference Record. Orlando, Florida, USA. (2009) pp. 2437-2440
  12. Min CH, Park JG, An SH, Kim CH: Determination of optimal energy window for measurement of prompt gammas from proton beam by Monte Carlo simulations. J Nucl Sci Technol S5:28-31 (2008)