• Title/Summary/Keyword: High Dynamic

Search Result 7,292, Processing Time 0.037 seconds

Analysis of the Characteristics of Biophilic Design in 『Soswaewon 48 Yeong』 (『소쇄원 48영』에 나타난 바이오필릭 디자인 특성분석)

  • Lee, Hyung-Sook;Choi, Mi-Seon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.58-66
    • /
    • 2022
  • Biophilic design is an approach that attempts to connect people with nature to promote health, recovery and restoration processes. The purpose of this study was to systematically analyze restorative factors and characteristics of Soswaewon by applying a biophilic design analysis framework. To this end, a biophilic design classification system was established and content analysis and frequency analysis were conducted for 『Soswaewon 48 Young』. the ratio of plant words including bamboo, pine, and plum was the highest, and words related to dynamic water flow or interaction with water as well as various water types such as streams, waterfalls, and ponds were also high. appeared in rank. In addition, multisensory factors, seasonal changes, microclimatic factors, emotional elements that allow people to indirectly experience nature were expressed in various ways. The space layout and circulation provide opportunities to appreciate and experience the rich sensory resources of Soswaewon. In conclusion, this study confirmed the healing and restorative value of Soswaewon from the perspective of biophilic design, and it needs further research on the restorative factors of traditional spaces.

Image Quality Analysis According to the of a Linear Transducer (선형 탐촉자에서 관심 시각 영역 변화에 따른 화질 분석)

  • Ji-Na, Park;Jae-Bok, Han;Jong-Gil, Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.975-984
    • /
    • 2022
  • Since a linear transducer has an area of interest equal to the length of the transducer, the area of interest can be expanded using the virtual convex function installed in the device.However, it was thought that the change in the direction of the ultrasonic sound velocity according to the change in the visual area of interest would affect the image quality, so this was objectively confirmed. For this study, image evaluation and SNR·CNR of the phantom for ultrasound quality control were measured. As a result, in the phantom image evaluation, both images were able to identify structures in functional resolution, grayscale, and dynamic range. However, it was confirmed that the standard image was excellent in the reproducibility of the size and shape of the structure. As a result of SNR·CNR evaluation, SNR·CNR of most trapezoidal images was low, except for structures at specific locations. In addition, through the statistical analysis graph, it was further confirmed that the SNR and CNR for each depth decreased as the size of the cystic structure decreased. Through this study, it was confirmed that the use of the function has the advantage of providing a wide visual area of interest, but it has an effect on the image quality. Therefore, when using the virtual convex function, it is judged that the examiner should use it in an appropriate situation and conduct various studies to acquire high-quality images and to improve the understanding and proficiency of the equipment.

Magnesium Sulfate Resistance of Geopolymer Incorporating Evaporated Rice Husk Powder (증해추출 왕겨분말을 혼입한 지오폴리머의 황산마그네슘 저항성에 관한 연구)

  • Cho, Seung-Bi;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.663-672
    • /
    • 2022
  • The purpose of this study is to evaluate the magnesium sulfate resistance of a geopolymer mixed with rice husk powder. General concrete, silica fume mixed concrete, and binary blended geopolymer were selected as comparison targets to confirm the magnesium sulfate resistance, and sulfate deterioration was calculated using the compressive strengths with ages. In addition, the weight change rate and the relative dynamic coefficient of the geopolymer were comparatively analyzed, and the degree of etteringite formation was confirmed using X-ray diffraction analysis. the experiment, the geopolymer mixed with 10% rice husk powder showed 10.8% higher compressive strength than concrete with silica fume when submerged for 56 days. Also, the geopolymer mixed with rice husk powder showed a small weight change rate of 0.9 to 1.45%. composition after immersion in magnesium sulfate through X-ray diffraction analysis, it was observed that a small amount of ettringite was dispersed in the geopolymer containing rice husk powder. Thus, there is a high correlation with the corrosion resistance of magnesium sulfate

Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica (해양-빙붕 상호작용을 고려한 남극 테라노바 만에서 수괴 형성과 순환의 수치 시뮬레이션)

  • Taekyun, Kim;Emilia Kyung, Jin;Ji Sung, Na;Choon Ki, Lee;Won Sang, Lee;Jae-Hong, Moon
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.269-285
    • /
    • 2022
  • The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.

Evaluation of Ammonia Emission Coefficient according to the use of Compound Fertilizers when Cultivating Apples and Pears in Orchards (과수원에서 사과 및 배 재배 시 복합비료 시용에 따른 암모니아 배출계수 평가)

  • Kim, Min-Wook;Hong, Sung-Chang;Yu, Seon-Young;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.366-372
    • /
    • 2021
  • BACKGROUND: Ammonia is known as a precursor to fine particulate matter, and according to CAPSS, annual ammonia emissions in the agricultural sector were 249,777 tons as of 2018, accounting for about 79.0% of Korea's total ammonia emissions. In particular, ammonia emissions from agricultural land increased by 19,566 tons (10.2%) compared to the previous year. The Ministry of Environment is setting emission statistics using the ammonia emission coefficient developed in Korea in 2008, but researchers in the agricultural field regard it as a coefficient that does not reflect the reality of Korea's agricultural environment. Accordingly, in order to develop ammonia emission coefficients from the cultivation of apples and pears, Korea's representative fruit type, test agricultural land was set in Iksan, Jeollabuk-do. METHODS AND RESULTS: This study attempted to obtain the ammonia emission coefficient by the treatment of the composite fertilizer (N-P2O5-K2O=12-7-9), and the flux was measured using a dynamic flow-through chamber method. As for the chamber, a total of 12 chambers were installed repeatedly in 4 zones and used to develop emission coefficients. Using compound fertilizers during fruit tree cultivation, the ammonia emission coefficient was evaluated as 10.4 kg NH3/ton for pears and 15.3 kg NH3/ton for apples. The reason why the ammonia emission coefficient according to the use of composite fertilizers was calculated higher for apple cultivation is believed to be due to the relatively high pH concentration of apple orchard soil. CONCLUSION(S): This study may provide basic data for upgrading the ammonia emission coefficient when using composite fertilizers in agricultural land. In the future, it might be necessary to upgrade the calculation of emissions through the development of ammonia and fine particulate matter emission coefficients considering the agricultural environment of Korea.

Establishment of the large-scale longitudinal multi-omics dataset in COVID-19 patients: data profile and biospecimen

  • Jo, Hye-Yeong;Kim, Sang Cheol;Ahn, Do-hwan;Lee, Siyoung;Chang, Se-Hyun;Jung, So-Young;Kim, Young-Jin;Kim, Eugene;Kim, Jung-Eun;Kim, Yeon-Sook;Park, Woong-Yang;Cho, Nam-Hyuk;Park, Donghyun;Lee, Ju-Hee;Park, Hyun-Young
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.465-471
    • /
    • 2022
  • Understanding and monitoring virus-mediated infections has gained importance since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Studies of high-throughput omics-based immune profiling of COVID-19 patients can help manage the current pandemic and future virus-mediated pandemics. Although COVID-19 is being studied since past 2 years, detailed mechanisms of the initial induction of dynamic immune responses or the molecular mechanisms that characterize disease progression remains unclear. This study involved comprehensively collected biospecimens and longitudinal multi-omics data of 300 COVID-19 patients and 120 healthy controls, including whole genome sequencing (WGS), single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA(+scTCR/BCR)-seq), bulk BCR and TCR sequencing (bulk TCR/BCR-seq), and cytokine profiling. Clinical data were also collected from hospitalized COVID-19 patients, and HLA typing, laboratory characteristics, and COVID-19 viral genome sequencing were performed during the initial diagnosis. The entire set of biospecimens and multi-omics data generated in this project can be accessed by researchers from the National Biobank of Korea with prior approval. This distribution of large-scale multi-omics data of COVID-19 patients can facilitate the understanding of biological crosstalk involved in COVID-19 infection and contribute to the development of potential methodologies for its diagnosis and treatment.

Evaluation of Water Quality Change by Membrane Damage to Pretreatment Process on SDI in Wastewater Reuse (하수재이용에서 전처리 막 손상에 의한 수질변화가 SDI에 미치는 영향평가)

  • Lee, Min Soo;Seo, Dongjoo;Lee, Yong-Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.253-263
    • /
    • 2022
  • This study suggests a guideline for designing unit process of wastewater reuse in terms of a maintenance of the process based on critical parameters to draw a high quality performance of RO unit. Defining the parameters was done by applying membrane integrity test (MIT) in pretreatment process utilizing lab-scale MF. SDI is utilized for judging whether permeate is suitable to RO unit. However, result said TOC concentration matching with particle count analysis is better for judging the permeate condition. When membrane test pressure (Ptest) was measured to derive log removal value in PDT, virgin state of membrane fiber was used to measure dynamic contact angle utilizing surface tension of the membrane fiber. Actually, foulant affects to the state of membrane surface, and it decreases the Ptest value along with time elapsed. Consequently, LRVDIT is also affected by Ptest value. Thus, sensitivity of direct integrity test descends with result of Ptest value change, so Ptest value should be considered not the virgin state of the membrane but its current state. Overall, this study focuses on defining design parameters suitable to MF pretreatment for RO process in wastewater reuse by assessing its impact. Therefore, utilities can acknowledge that the membrane surface condition must be considered when users conduct the direct integrity test so that Ptest and other relative parameter used to calculate LRVDIT are adequately measured.

Roles of Local Estrogen and Progesterone Mediated Receptors in the Regulation of Endometrial Inflammation (자궁내막 염증에 대한 지엽적 에스트로겐 및 프로게스테론 매개 수용체의 역할)

  • Gyesik Min
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.102-113
    • /
    • 2023
  • This review discusses the cellular and molecular mechanisms by which the endometrial estrogen and progesterone receptors regulate local estrogen production, expression of the specific estrogen receptors, progesterone resistance, inflammatory responses and the differentiation and survival of endometriotic cells in endometrial inflammation. The epigenetic aberrations of endometrial stromal cells play an important role in the pathogenesis and progression of endometriosis. In particular, differential methylation of the estrogen receptor genes changes in the stromal cells the dominancy of estrogen receptor from ERα into ERβ, and results in the abnormal estrogen responses including inflammation, progesterone resistance and the disturbance of retinoid synthesis. These stromal cells also stimulate local estrogen production in response to PGE2 and the SF-1 mediated induction of steroidogenic enzyme expression, and the increased estradiol then feeds back into the ERβ to repeat the vicious inflammatory cycle through the activation of COX-2. In addition, high levels of ERβ expression may also change the chromatin structure of endometrial mesenchymal stem cells, and together with the repeated menstrual cycles can induce formation of the endometriotic tissue. The cascade of these serial events then leads to cell adhesion, angiogenesis and survival of the differentiation-disregulated stromal cells through the action of inflammatory factors such as ERβ-mediated estrogen, TNF-α and TGF-β1. Therefore, understanding of the dynamic hormonal changes during the menstrual cycle and the corresponding signal transduction mechanisms of the related nuclear receptors in endometrium would provide new insights for treating inflammatory diseases such as the endometriosis.

Analysis Program for Offshore Wind Energy Substructures Embedded in AutoCAD (오토캐드 환경에서 구현한 해상풍력 지지구조 해석 프로그램)

  • James Ban;Chuan Ma;Sorrasak Vachirapanyakun;Pasin Plodpradit;Goangseup Zi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.33-44
    • /
    • 2023
  • Wind power is one of the most efficient and reliable energy sources in the transition to a low-carbon society. In particular, offshore wind power provides a high-quality and stable wind resource compared to onshore wind power while both present a higher installed capacity than other renewables. In this paper, we present our new program, the X-WIND program well suitable for the assessment of the substructure of offshore wind turbines. We have developed this program to increase the usability of analysis programs for offshore wind energy substructures by addressing the shortcomings of existing programs. Unlike the existing programs which cannot solely perform the substructure analyses or lack pre-post processors, our X-WIND program can complete the assessment analysis for the offshore wind turbines alone. The X-WIND program is embedded in AutoCAD so that both design and analysis are performed on a single platform. This also performs static and dynamic analysis for wind, wave, and current loads, essential for offshore wind power structures, and includes pre/post processors for designs, mesh developments, graph plotting, and code checking. With this expertise, our program enhances the usability of analysis programs for offshore wind energy substructures, promoting convenience and efficiency.

Pedagogical Characteristics Supporting Gifted Science Students' Agentic Participation in the Scientist-led Research and Education (R&E) Program: Focusing on the Positioning of Instructors and Students (전문가 사사 R&E에서 과학영재의 행위주체적 연구 참여를 지원하는 교수적 특성 -교수자와 학생의 위치짓기를 중심으로-)

  • Minjoo Lee;Heesoo Ha
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.4
    • /
    • pp.351-368
    • /
    • 2023
  • The scientist-led Research and Education (R&E) program aims to strengthen gifted science students' research capabilities under the guidance of scientists. Students' actual research experiences in scientist-led R&E activities range from understanding how scientists conduct research to actively participating in research. To develop R&E that promotes student agency, i.e., student participation, this study aimed to identify the pedagogical characteristics that supported gifted science students' agentic participation in the scientist-led R&E program. We conducted interviews with learners and scientists in three teams undertaking R&E activities every three months. The interview covered their perceptions of R&E activities, student participation, and scientists' support for the activities. The recordings and transcripts of the interviews were used as primary data sources for the analysis. The trajectory of each team's activities, as well as the learners' and scientists' dynamic positioning were identified. Based on this analysis, we inductively identified the pedagogical characteristics that emerged from classes in which the scientists supported the students' learning and engagement in research. Regarding agency, three types of student participation were identified: 1) the sustained exercise of agency, 2) the initial exercise and subsequent discouragement of agency, and 3) the continuous non-exercise of agency. Two pedagogical characteristics that supported the learners' agentic participation were identified: 1) opportunities for students to take part in research management and 2) scientist-student interactions encouraging learners to present expert-level ideas. This study contributes to developing pedagogies that foster gifted science students' agentic participation in scientist-led R&E activities.