• Title/Summary/Keyword: High Dose Rate

Search Result 888, Processing Time 0.035 seconds

Effect of Ganoderma lucidum Extract on Experimentally Induced Hepatic Damage and Hyperlipemic Rats. (영지(靈芝)엑기스가 백서(白鼠)의 실험적(實驗的) 간장중독(肝臟中毒) 및 고지혈증(高脂血症)에 미치는 영향(影響))

  • Lee, Moon-Joo;Chung, Myung-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.18 no.4
    • /
    • pp.254-264
    • /
    • 1987
  • This study was attempted to investigate the effect of Ganoderma lucidum (Young-Jii) extract on the activities of GPT GOT Al. P LDH and the level of total bilirubin and total cholesterol in serum of $CCl_4$-intoxicated rats, and on the level of total lipids triglyceride phospholipids and total cholesterol in the serum of experimentally induced hyperlipemic rats, and on the effect of body and liver weight in rats. The results were shown as follows; In $CCl_4$-intoxicated rats, the extract showed a significant decrease in the activities of GPT and Al.P, a slight decrease in the activity of GOT and LDH; The level of total bilirubin was slightly affected, but significantly decreased at a dose as high as 500 mg/kg; the level of total cholesterol was increased dose dependently. In hyperlipemic rats, the extract caused a significant decrease in the level of total lipids and triglyceride and the rate of decrease was more pronounced with repeated treatments for 10 days; the level of phospholipids and total cholesterol were slightly decreased with repeated treatment of the extract at a dose of 300 mg/kg for 10 days; A significant body weight gain was shown with the treatment of the extract.

  • PDF

Electron Dose Measurement with Polycarbonate Film Dosimeter

  • Yoo, Young-Soo
    • Nuclear Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.9-17
    • /
    • 1976
  • Dosimetrical properties of polycarbonate film for high-level dosimetry of electrons have been examined. Polycartonate film of 0.1mm in thickness was chosen for this purpose. It can cover the dose range of 1.0-130 Mrad and the measurable range can be extended up to 200 Mrad by using calibration curve. The measurement error was within 3.5%. The radiation induced optical density at 330nm shows rapid initial fading of 7-l3n for one day after irradiation at room temperature and subsequent fading rate is very small, about 0.6% per day. The fading depends on the absorbed dose, storage temperature, and wavelengths. The effects of storage time and temperature during and after irradiation of this film are presented. For practical dosimetry, it is necessary to stabilize the induced optical density by storing the irradiated film for a day or by heat treatment at 10$0^{\circ}C$ for an hour.

  • PDF

DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments

  • Chao, Nan;Liu, Yong-kuo;Xia, Hong;Peng, Min-jun;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.825-836
    • /
    • 2019
  • One of the most challenging safety precautions for workers in dynamic, radioactive environments is avoiding radiation sources and sustaining low exposure. This paper presents a sampling-based algorithm, DL-RRT*, for minimum dose walk-path re-planning in radioactive environments, expedient for occupational workers in nuclear facilities to avoid unnecessary radiation exposure. The method combines the principle of random tree star ($RRT^*$) and $D^*$ Lite, and uses the expansion strength of grid search strategy from $D^*$ Lite to quickly find a high-quality initial path to accelerate convergence rate in $RRT^*$. The algorithm inherits probabilistic completeness and asymptotic optimality from $RRT^*$ to refine the existing paths continually by sampling the search-graph obtained from the grid search process. It can not only be applied to continuous cost spaces, but also make full use of the last planning information to avoid global re-planning, so as to improve the efficiency of path planning in frequently changing environments. The effectiveness and superiority of the proposed method was verified by simulating radiation field under varying obstacles and radioactive environments, and the results were compared with $RRT^*$ algorithm output.

Assessment of occupational radiation exposure of NORM scales residues from oil and gas production

  • EL Hadji Mamadou Fall;Abderrazak Nechaf;Modou Niang;Nadia Rabia;Fatou Ndoye;Ndeye Arame Boye Faye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1757-1762
    • /
    • 2023
  • Radiological hazards from external exposure of naturally occurring radioactive materials (NORM) scales residues, generated during the extraction process of oil and gas production in southern Algeria, are evaluated. The activity concentrations of 226Ra, 232Th, and 40K were measured using high-purity gamma-ray spectrometry (GeHP). Mean activity concentration of 226Ra, 232Th and 40K, found in scale samples are 4082 ± 41, 1060 ± 38 and 568 ± 36 Bq kg-1, respectively. Radiological hazard parameters, such as radium equivalent (Raeq), external and internal hazard indices (Hex, Hin), and gamma index (Iγ) are also evaluated. All hazard parameter values were greater than the permissible and recommended limits and the average annual effective dose value exceeded the dose constraint (0.3 mSv y-1). However, for occasionally exposed workers, the dose rate of 0.65 ± 0.02 mSv y-1 is lower than recommended limit of 1 mSv y-1 for public.

Accelerated Soft Error Rate Study with Well Structures

  • Kim, Do-Woo;Gong, Myeong-Kook;Wang, Jin-Suk
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.15-18
    • /
    • 2003
  • The characteristics of accelerated soft error rate (ASER) for fabricated 8M SRAM are evaluated for various well structures. The application of the Buried NWell (BNW) and the variations of each well structure, well dose in process conditions are checked by ASER failure in time (FIT) in terms of reliability. The application of only the BNW shows the lowest ASER FIT value. The BNW added to the Buried PWell (BPW) shows a 200% increase and the BNW plus the Striped BPW (SBPW) shows a 100% increase compared to applying the BNW. The cases of applying SBPW show very high ASER FIT.

Radiation effect on the corrosion of disposal canister materials

  • Minsoo Lee;Junhyuk Jang;Jin Seop Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.941-948
    • /
    • 2024
  • The effects of radiation on the corrosion of canister materials were investigated for the reliable disposal of high-level radioactive waste. The test specimens were gamma-irradiated at a very low dose rate of approximately 0.1 Gy/h for six and twelve months. The copper and cast iron species were less corroded when irradiated. It is hypothesized that gamma rays suppress the formation of lower-enthalpy species like metal oxides and activate reductive reactions. In contrast, it was difficult to evaluate the effect of radiation on the corrosion of titanium and stainless steel.

Locally Advanced, Unresectable Pancreatic Cancer Treated by Stereotactic Radiation Therapy (국소적으로 진행된, 절제 불가능한 췌장암에서 정위 방사선 치료)

  • Choi Chul-Won;Kim Mi-Sook;Cho Chul-Koo;Yoo Seong-Yul;Yang Kwang-Mo;Yoo Hyung-Jun;Lee Dong-Han;Ji Young-Hoon;Han Chul-Ju;Kim Jin;Kim Young-Han
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2006
  • Puroose: In order to find out whether stereotactic radiation therapy (RT) using CyberKnife (CK) could improve survival rate and lower acute toxicity compared to conventional RT. Materials and Methods: From April 2003 through April 2004, 19 patients with Eastern Cooperative Oncology Group (ECOG) performance status ${\leq}3$ and locally advanced pancreas cancer without distant metastasis, evaluated by CT or PET/CT, were included. We administered stereotactic RT consisting of either 33 Gy, 36 Gy or 39 Gy in 3 fractions to 6, 4 and 9 patients, respectively, in an effort to increase the radiation dose step by step, and analyzed the survival rate and gastrointestinal toxicities by the acute radiation morbidity criteria of Radiation Therapeutic Oncology Group (RTOG). Prognostic factors of age, sex, ECOG performance score, chemotherapy, bypass surgery, radiation dose, CA 19-9, planning target volume (PTV), and adjacent organ and vessel invasion on CT scan were evaluated by Log Rank test. Results: The median survival time was 11 months with 1-year survival rate of 36.8%. During follow-up period (range $3{\sim}20$ months, median 10 months), no significant gastrointestinal acute toxicity (RTOG grade 3) was observed. In univariate analysis, age, sex, ECOG performance score, chemotherapy, bypass surgery, radiation dose, CA 19-9 level, and adjacent organ and vessel invasion did not show any significant changes of survival rate, however, patients with PTV (80 cc showed more favorable survival rate than those with PTV>80 cc (p-value<0.05). In multivariate analysis, age younger than 65 years and PTV>80 cc showed better survival rate. Conclusion: In terms of survival, the efficacy of stereotactic radiation therapy using CK was found to be superior or similar to other recent studies achieved with conventional RT with intensive chemotherapy, high dose conformal RT, intraoperative RT (IORT), or intensity modulated RT (IMRT). Furthermore, severe toxicity was not observed. Short treatment time in relation to the short life expectancy gave patients more convenience and, finally, quality of life would be increased. Consequently, this could be regarded as an effective novel treatment modality for locally advanced, unresectable pancreas cancer. PTV would be a helpful prognostic factor for CK.

Effects of Low Dose γ-Radiation on Photosynthesis of Red Pepper (Capsicum annuum L.) and the Reduction of Photoinhibition (저선량 γ선 조사가 고추의 광합성과 광 스트레스 경감에 미치는 효과)

  • Lee, Hae-Youn;Baek, Myung-Hwa;Park, Soon-Chul;Park, Youn-Il;Kim, Jae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.83-89
    • /
    • 2002
  • The effect of low dose $\gamma$ radiation on photosynthesis and the reduction of photoinhibition in red pepper plant was investigated. The seedling height leaf width and leaf length of pepper were stimulated in plants grown from seeds irradiated with the low dose of 4 Gy. The $O_2$ evolution in the 4 Gy irradiation group was 1.5 times greater than in the control. To investigate the effect of low dose $\gamma$ radiation on response to high light stress, photoinhibition was induced in leaves of pepper by illumination of high light (900 $\mu mol/m^2/s$). Pmax was decreased with increasing illumination time by 20% in the control, while hardly decreased in the 4 Gy irradiation group. The photochemical yield of PSII, estimated as Fv/Fm, was decreased with increasing illumination time by 50% after 4 hours while Fo did not change. However, Fv/Fm in the 4 Gy irradiation group was decreased by 37% of inhibition, indicating that the photoinhibition was decreased by the low dose $\gamma$ radiation. Changes in the effective quantum yield of PSII, $\Phi_{PSII}$, and 1/Fo-1/Fm, a measure of the rate constant of excitation trapping by the PSII reaction center, showed similar pattern to Fv/Fm. And NPQ was decreased after photoinhibitory treatment showing no difference between the control and the 4 Gy irradiation group. These results showed the positive effect of low dose $\gamma$ radiation on the seedling growth and the reduction of photoinhibition.

Conceptual Study of Brain Dedicated PET Improving Sensitivity

  • Shin, Han-Back;Choi, Yong;Huh, Yoonsuk;Jung, Jin Ho;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.236-240
    • /
    • 2016
  • The purpose of this study is to propose a novel high sensitivity neuro-PET design. The improvement of sensitivity in neuro-PET is important because it can reduce scan time and/or radiation dose. In this study, we proposed a novel PET detector design that combined conical shape detector with cylindrical one to obtain high sensitivity. The sensitivity as a function of the oblique angle and the ratio of the conical to cylindrical portion was estimated to optimize the design of brain PET using Monte Carlo simulation tool, GATE. An axial sensitivity and misplacement rate by penetration of ${\gamma}$ rays were also estimated to evaluate the performance of the proposed PET. The sensitivity was improved by 36% at the center of axial FOV. This value was similar to the calculated value. The misplacement rate of conical shaped PET was about 5% higher than the conventional PET. The results of this study demonstrated the conical detector proposed in this study could provide subsequent improvement in sensitivity which could allow to design high sensitivity PET for brain imaging.