• 제목/요약/키워드: High Dimensionality Data

검색결과 121건 처리시간 0.023초

Data-Compression-Based Resource Management in Cloud Computing for Biology and Medicine

  • Zhu, Changming
    • Journal of Computing Science and Engineering
    • /
    • 제10권1호
    • /
    • pp.21-31
    • /
    • 2016
  • With the application and development of biomedical techniques such as next-generation sequencing, mass spectrometry, and medical imaging, the amount of biomedical data have been growing explosively. In terms of processing such data, we face the problems surrounding big data, highly intensive computation, and high dimensionality data. Fortunately, cloud computing represents significant advantages of resource allocation, data storage, computation, and sharing and offers a solution to solve big data problems of biomedical research. In order to improve the efficiency of resource management in cloud computing, this paper proposes a clustering method and adopts Radial Basis Function in order to compress comprehensive data sets found in biology and medicine in high quality, and stores these data with resource management in cloud computing. Experiments have validated that with such a data-compression-based resource management in cloud computing, one can store large data sets from biology and medicine in fewer capacities. Furthermore, with reverse operation of the Radial Basis Function, these compressed data can be reconstructed with high accuracy.

GC-트리 : 이미지 데이타베이스를 위한 계층 색인 구조 (GC-Tree: A Hierarchical Index Structure for Image Databases)

  • 차광호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제31권1호
    • /
    • pp.13-22
    • /
    • 2004
  • 멀티미디어 데이타의 사용이 증가함에 따라 고차원 이미지 데이타에 대한 효율적인 색인과 검색 기법이 크게 요구되고 있다. 그러나 많은 노력에도 불구하고 현재의 다차원 색인 기법들은 고차원 데이타 공간에서 만족할 만한 성능을 보여주지 못하고 있다. 이러한 소위 차원의 저주를 해결하기 위해 최근에 차원을 줄이거나 근사 해를 구하는 둥의 접근법이 시도되고 있지만 이러한 방법들은 근본적으로 정확도의 상실이라는 문제를 갖고 있다. 정확도의 보존을 위해 VA-file, LPC-file둥과 같이 벡터 근사에 기반 한 기법들이 최근에 개발되었다. 그러나 이 기법은 검색 성능이 색인 파일의 크기에 큰 영향을 받으며, 한번에 큰 검색 공간을 줄이는 계층 색인 구조의 장점을 상실한다. 본 논문에서는 이미지 데이터베이스에서 유사성 질의를 위한 새로운 계층 색인 구조인 GC-트리를 제안한다. GC-트리는 밀도 함수에 기초하여 데이타 공간을 적응적으로 분할하고, 색인 구조를 동적으로 생성한다. 이러한 특성을 갖는 GC-트리는 군집화 된 고차원 이미지 데이타 검색에 훌륭한 성능을 나타낸다.

Measuring health activation among foreign students in South Korea: initial evaluation of the feasibility, dimensionality, and reliability of the Consumer Health Activation Index (CHAI)

  • Park, MJ;Jung, Hun Sik
    • International Journal of Advanced Culture Technology
    • /
    • 제8권3호
    • /
    • pp.192-197
    • /
    • 2020
  • Foreign students in South Korea face important challenges when they try to maintain their health. As a measure of their motivation to actively build skills for overcoming those challenges, we evaluated the 10-item Consumer Health Activation Index (CHAI), testing its feasibility, dimensionality, and reliability. There were no missing data, there was no floor effect, and for the total scores the ceiling effect was trivial (< 2%). Results of the Kaiser-Meyer-Olkin test and Bartlett's test of sphericity indicated that the data were suitable for the detection of structure by factor analysis. The results of parallel analysis and the shape of the scree plot supported a two-factor solution. One factor had 3 items concerning "my doctor" and the other factor had the 7 remaining items. Reliability was high for the 10-item CHAI (alpha = 0.856), for the 3-item subscale (alpha = 0.838), and for the 7-item subscale (alpha = 0.857). Reliability could not be improved by deletion of any items. Use of the CHAI to gather data from these foreign students is feasible, and reliable results can be obtained whether one uses the total score from all 10 items or scores from the proposed 7-item and 3-item subscales.

기계학습 접근법에 기반한 유전자 선택 방법들에 대한 리뷰 (A review of gene selection methods based on machine learning approaches)

  • 이하정;김재직
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.667-684
    • /
    • 2022
  • 유전자 발현 데이터는 각 유전자에 대해 mRNA 양의 정도를 나타내고, 그러한 유전자 발현량에 대한 분석은 질병 발생에 대한 메커니즘을 이해하고 새로운 치료제와 치료 방법을 개발하는데 중요한 아이디어를 제공해오고 있다. 오늘날 DNA 마이크로어레이와 RNA-시퀀싱과 같은 고출력 기술은 수천 개의 유전자 발현량을 동시에 측정하는 것을 가능하게 하여 고차원성이라는 유전자 발현 데이터의 특징을 발생시켰다. 이러한 고차원성으로 인해 유전자 발현 데이터를 분석하기 위한 학습 모형들은 과적합 문제에 부딪히기 쉽고, 이를 해결하기 위해 차원 축소 또는 변수 선택 기술들이 사전 분석 단계로써 보통 사용된다. 특히, 사전 분석 단계에서 우리는 유전자 선택법을 이용하여 부적절하거나 중복된 유전자를 제거할 수 있고 중요한 유전자를 찾아낼 수도 있다. 현재까지 다양한 유전자 선택 방법들이 기계학습의 맥락에서 개발되어왔다. 본 논문에서는 기계학습 접근법을 사용하는 최근의 유전자 선택 방법들을 집중적으로 살펴보고자 한다. 또한, 현재까지 개발된 유전자 선택 방법들의 근본적인 문제점과 앞으로의 연구 방향에 대해 논의하고자 한다.

Canonical Correlation Biplot

  • Park, Mi-Ra;Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제3권1호
    • /
    • pp.11-19
    • /
    • 1996
  • Canonical correlation analysis is a multivariate technique for identifying and quantifying the statistical relationship between two sets of variables. Like most multivariate techniques, the main objective of canonical correlation analysis is to reduce the dimensionality of the dataset. It would be particularly useful if high dimensional data can be represented in a low dimensional space. In this study, we will construct statistical graphs for paired sets of multivariate data. Specifically, plots of the observations as well as the variables are proposed. We discuss the geometric interpretation and goodness-of-fit of the proposed plots. We also provide a numerical example.

  • PDF

Bayesian baseline-category logit random effects models for longitudinal nominal data

  • Kim, Jiyeong;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제27권2호
    • /
    • pp.201-210
    • /
    • 2020
  • Baseline-category logit random effects models have been used to analyze longitudinal nominal data. The models account for subject-specific variations using random effects. However, the random effects covariance matrix in the models needs to explain subject-specific variations as well as serial correlations for nominal outcomes. In order to satisfy them, the covariance matrix must be heterogeneous and high-dimensional. However, it is difficult to estimate the random effects covariance matrix due to its high dimensionality and positive-definiteness. In this paper, we exploit the modified Cholesky decomposition to estimate the high-dimensional heterogeneous random effects covariance matrix. Bayesian methodology is proposed to estimate parameters of interest. The proposed methods are illustrated with real data from the McKinney Homeless Research Project.

A Novel Approach of Feature Extraction for Analog Circuit Fault Diagnosis Based on WPD-LLE-CSA

  • Wang, Yuehai;Ma, Yuying;Cui, Shiming;Yan, Yongzheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2485-2492
    • /
    • 2018
  • The rapid development of large-scale integrated circuits has brought great challenges to the circuit testing and diagnosis, and due to the lack of exact fault models, inaccurate analog components tolerance, and some nonlinear factors, the analog circuit fault diagnosis is still regarded as an extremely difficult problem. To cope with the problem that it's difficult to extract fault features effectively from masses of original data of the nonlinear continuous analog circuit output signal, a novel approach of feature extraction and dimension reduction for analog circuit fault diagnosis based on wavelet packet decomposition, local linear embedding algorithm, and clone selection algorithm (WPD-LLE-CSA) is proposed. The proposed method can identify faulty components in complicated analog circuits with a high accuracy above 99%. Compared with the existing feature extraction methods, the proposed method can significantly reduce the quantity of features with less time spent under the premise of maintaining a high level of diagnosing rate, and also the ratio of dimensionality reduction was discussed. Several groups of experiments are conducted to demonstrate the efficiency of the proposed method.

Quantitative Analysis for Plasma Etch Modeling Using Optical Emission Spectroscopy: Prediction of Plasma Etch Responses

  • Jeong, Young-Seon;Hwang, Sangheum;Ko, Young-Don
    • Industrial Engineering and Management Systems
    • /
    • 제14권4호
    • /
    • pp.392-400
    • /
    • 2015
  • Monitoring of plasma etch processes for fault detection is one of the hallmark procedures in semiconductor manufacturing. Optical emission spectroscopy (OES) has been considered as a gold standard for modeling plasma etching processes for on-line diagnosis and monitoring. However, statistical quantitative methods for processing the OES data are still lacking. There is an urgent need for a statistical quantitative method to deal with high-dimensional OES data for improving the quality of etched wafers. Therefore, we propose a robust relevance vector machine (RRVM) for regression with statistical quantitative features for modeling etch rate and uniformity in plasma etch processes by using OES data. For effectively dealing with the OES data complexity, we identify seven statistical features for extraction from raw OES data by reducing the data dimensionality. The experimental results demonstrate that the proposed approach is more suitable for high-accuracy monitoring of plasma etch responses obtained from OES.

A Feature Vector Selection Method for Cancer Classification

  • Yun, Zheng;Keong, Kwoh-Chee
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.23-28
    • /
    • 2005
  • The high-dimensionality and insufficiency of gene expression profiles and proteomic profiles makes feature selection become a critical step in efficiently building accurate models for cancer problems based on such data sets. In this paper, we use a method, called Discrete Function Learning algorithm, to find discriminatory feature vectors based on information theory. The target feature vectors contain all or most information (in terms of entropy) of the class attribute. Two data sets are selected to validate our approach, one leukemia subtype gene expression data set and one ovarian cancer proteomic data set. The experimental results show that the our method generalizes well when applied to these insufficient and high-dimensional data sets. Furthermore, the obtained classifiers are highly understandable and accurate.

  • PDF

Negative binomial loglinear mixed models with general random effects covariance matrix

  • Sung, Youkyung;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제25권1호
    • /
    • pp.61-70
    • /
    • 2018
  • Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.