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ABSTRACT 

Monitoring of plasma etch processes for fault detection is one of the hallmark procedures in semiconductor manufac-
turing. Optical emission spectroscopy (OES) has been considered as a gold standard for modeling plasma etching 
processes for on-line diagnosis and monitoring. However, statistical quantitative methods for processing the OES data 
are still lacking. There is an urgent need for a statistical quantitative method to deal with high-dimensional OES data 
for improving the quality of etched wafers. Therefore, we propose a robust relevance vector machine (RRVM) for 
regression with statistical quantitative features for modeling etch rate and uniformity in plasma etch processes by us-
ing OES data. For effectively dealing with the OES data complexity, we identify seven statistical features for extrac-
tion from raw OES data by reducing the data dimensionality. The experimental results demonstrate that the proposed 
approach is more suitable for high-accuracy monitoring of plasma etch responses obtained from OES. 
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1.  INTRODUCTION 

Several processing steps have been developed in 
semiconductor manufacturing industry for increasing the 
manufacturing productivity and improving the perform-
ance; examples include deposition, etching, ashing, pol-
ishing, annealing, and patterning (Hastie et al., 2001; 
Kim et al., 2005; Kolari, 2008; Sugawara, 1998). Among 
these steps, etching plays an important role in device 
fabrication, because it can be used for controlling the 
size and reducing the dimensionality of an integrated 

circuit system. In this step, a plasma-aided process is 
potentially addressed for modifying the surfaces of the 
materials and for solving a critical problem of device 
dimensionality; during this process low pressure, non-
equilibrium, and partially ionized gas discharge plasmas 
are effectively characterized (Hitchon, 1999; Ko et al., 
2010). However, physical properties of either the device 
or the wafer may not be accurately controlled owing to 
irregular factors or unexpected events in the system dur-
ing the process operation. This problem critically affects 
the device’s performance characteristics, such as the 
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power consumption, the extent of leakage current, de-
vice reliability, device efficiency, and physical proper-
ties. Therefore, the processes of chip and/or device ma-
nufacturing should be more carefully monitored and 
precisely predicted in timely manner. This concern be-
comes a challenging task in state-of-the-art advanced 
process controlling. A schematic of the plasma etching 
system is shown in Figure 1. 

For diagnostics of plasma processes, relevant ex-
amples are provided by the modeling of X-ray photo-
electron spectroscopy data (Kim and Kim, 2007; Kim 
and Park, 2006) and the prediction of etch properties by 
learning optical emission spectroscopy (OES) (Hong and 
May, 2005; Hong et al., 2003; Kim and Kwon, 2008; 
Ko et al., 2010). Instead of dealing with full sets of OES 
data, reduced sets that were generated by using wavelets 
and principal component analysis (PCA) were used for 
modeling (Bayissa et al., 2008; Kim and Kim, 2007; 
Kim and Kwon, 2008; Kim and Park, 2006). Plasma 
etch models were devised by using statistical regression 
techniques in conjunction with principal component 
regression (PCR) and neural network methods (Hong 
and May, 2005; Hong et al., 2003; Kim et al., 2005; Kim 
and Kim, 2005). In addition, Zhang et al. (2006) proposed 
a continuous wavelet transform methodology for impro-
ving the axial resolution of acoustic micro-imaging, in 
the context of advanced microelectronic packaging. Ko 
et al. (2008) developed a kernel-based regression model 
by using wavelet-compressed OES data. They used a 
wavelet transform with vertical energy thresholding (VET) 
shrinkage procedures, which were used for reducing the 
dimensionality of multiple functional data. However, sta-
tistical quantitative methods for processing high-dimen-
sional OES data are still lacking.  

To address this issue, in this paper, we propose a 
novel procedure combining a robust supervised learning 
algorithm with statistical quantitative features extracted 
from original OES data for modeling plasma processes. 
To effectively address the high dimensionality of the 
OES data, seven statistical features are identified here as 
carrying significant input information, and robust rele-
vance vector machine (RRVM) is employed for moni-
toring of plasma etch processes. The proposed approach 

in this paper is likely to make important contributions to: 
(1) extracting informative statistical features from raw 
OES data and (2) building a robust regression model for 
accurately predicting the etch responses during plasma 
etch processes. To our best knowledge, there are little 
literatures about the use of statistical quantitative fea-
tures to model plasma responses in semiconductor 
manufacturing. 

The rest of this paper is organized as follows. In 
Section 2, we describe the experimental details for ob-
taining the OES datasets. In Section 3, we present the 
proposed statistical quantitative approach combined with 
a RRVM for monitoring of etch processes. Computa-
tional results and conclusions are given in Sections 4 
and 5, respectively. 

2.  EXPERIMENTAL DETAILS 

Plasma etching was performed by using a magneti-
cally enhanced chemical vapor deposition system. A 
schematic of plasma equipment was presented as well as 
the fabrication of the test patterns. Therefore, they are 
briefly described here. The test patterns were fabricated 
on (100)-Si substrates. Following a deionized water 
rinse, a 900-nm-thick oxide film was deposited by using 
a plasma-enhanced chemical vapor deposition system. A 
1.02-nm-thick photoresist film was then spin-coated, 
followed by photoresist patterning. During the etching, 
OES was used for collecting in-situ radical data for 
wavelengths ranging from 227.6 to 791.6 nm, by using a 
sample interval of 0.3 nm. Examples of OES data and 
the corresponding etch responses are shown in Figure 2. 
Face-centered box Wilson experimental design was used 
in this study, and the scenarios are shown in Table 1.  

A 24-1 fractional factorial experiment was performed, 
and the corresponding eight experiments are shown in 
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Figure 1. Schematic of the plasma etching system. 
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Table 1. A training data set was combined with one cen-
tral design point. Face-centered points were generated 
and used as a testing data set. The data from one of the 
nine experiments has not been collected owing to an 
inappropriate parameters setting. The etch rate was cal-
culated by dividing the etched film thickness by the etch 
time of 60s. To assess the non-uniformity, etch rates 
were measured at five points on the wafer. Four points 
were equidistant from the central point. The metric for 
measuring the non-uniformity was defined as: 

max min 100 (%)
avg

R RNonuniformity
R
−

= ×    (1) 

where Rmax and Rmin indicate the maximal and minimal 
etch rates, respectively. Ravg is the average etch rate, 
which is obtained simply by averaging over five values 
of etch rates. 

3.  PROPOSED QUANTITATIVE STATIS-
TICAL MODEL 

The quantitative statistical approach is based on 
characterizing the statistical features of OES data and 
applying robust relevance vector machine (RRVM) for 
predicting the etch responses from which the OES data 
were drawn. 

3.1 Statistical Features 

In this subsection, a novel approach for predicting 
plasma etching responses based on the statistical fea-
tures of OES data is proposed. Denoting by jy ∈ =Y  
{ }1 2, , , ny y yL  the raw OES data vector of length n, the 
following statistical features can be investigated: 

 
1. Curve length (CL): The approximate length of a raw 

OES data vector. 
1

1
1

n

CL j j
j

S y y
−

+
=

= −∑    (2) 

2. Peaks: The number of local maxima. 
 

{ }
2

2 1 1
1

1 max 0,  sgn sgn
2

n

Peak j j j j
j

S y y y y
−

+ + +
=

⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦∑  (3) 

 
3. Root mean square (RMS): Describes the magnitude of 

the OES data fluctuation. 
 

2

1

1 n

RMS j
j

S y
n =

= ∑    (4) 

 
4. Average nonlinear energy (ANE): Represents the 

extent of nonlinearity in the raw signal. 
 

( )
1

2
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1
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5. Standard deviation (SD): Measures the extent of 

variation or dispersion from the average. 
 

( )
1 2

1

1
1

n

SD j
j

S y Y
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−

=
= −
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where 

1

1 n

j
j

Y y
n =

= ∑  is the overall mean of the raw signal. 

6. Kurtosis: The fourth moment of a distribution, captur-
ing the size of the distribution’s tails.  
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      (7) 

 
7. Skewness: Characterizes the extent of asymmetry of a 

distribution around its mean.  
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  (8) 

 
The selected statistical features have been explored 

to be useful to capture the underlying nature of specific 
signals in diverse applications (Guo et al., 2005; Picard 
et al., 2001). In addition, the advantage of using these 
statistical features is relatively small computational bur-
den associated with data transformation from raw OES 
data, making these features advantageous for developing 
online monitoring procedures.  

3.2 Robust Relevance Vector Machine for 
Regression 

Next, we combine the proposed statistical features 

Table 1. 24-1 fractional factorial design 

Run CHF3 CF4 RF power Pressure 
1 20 10 300 50 
2 20 10 800 200 
3 20 40 300 200 
4 20 40 800 50 
5 80 10 300 200 
6 80 10 800 50 
7 80 40 300 50 
8 80 40 800 200 
9* 50 25 550 125 

* indicates the central point in the training data set. 
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into a robust relevance vector machine (RRVM) for 
predicting the etch responses, such as the etch rate and 
non-uniformity.  

Relevance vector machine for regression (RVR) is 
a Bayesian sparse kernel technique which shares many 
of the characteristics of the SVR (Bishop, 2006). The 
structure of the RVR is described as follows: 

 
( ; )i iy f ε= +x β    (9) 

 
where iε ’s are independent samples from ( | ) ~ip Nε γ  

1(0, ).γ −  By using the given the training data, the regres-
sion model ( ; )f x β  should be inferred to have a good 
generalization capability. The regression model can be 
expressed as 

0
1

( ; ) ( )
n

i i
i

f β φ β
=

= +∑x β x   (10) 

where the vector iβ  is the weight parameter of the model, 
0β  is a bias, and 1(1, ( ), , ( ))T

Nφ φ=(x) x xLφ  is the basis 
function vector.  

The limitation of a conventional RVR is the sensi-
tivity of outliers. In other words, if the training data set 
is contaminated by some outlying observations, RVR 
could give unreliable and inaccurate results. To deal with 
this problem, Hwang et al. (2014) recently proposed a 
robust relevance vector machine for regression (RRVM) 
to reduce the effect of outliers by using a weight strat-
egy and utilize a variational inference method to esti-
mate the posterior distribution over model parameters. 
To overcome an outlier problem, they used the noise 

iε ’s have heteroscedastic variance ( | , ) ~ (0,i ip w Nε γ  
1( ) ).iw γ −

 To obtain a robust model coefficients ,β  by 
assuming independently distributed data, a weighting 
strategy can be employed to the likelihood function as 

 
( )| , ,p γ =y β w  

( ) ( ) { }21 22

1
2 exp

2

N
N Ti

i i i
i

ww yγ
π γ−

=

⎡ ⎤− −⎢ ⎥⎣ ⎦
∏ β (x )φ  (11) 

 
where 1( , , )T

Ny y=y L  and 1( , , ) .T
Nw w=w L  We ap-

proximate the posterior distribution over model coeffi-
cients β  using a variational inference method under the 
following prior distributions over the model parameters: 
 

( )| ( | , )p N=β α β μ Σ   (12) 

( ) ( )
0

| , | ,
N

i i
i

p a b Gamma a bα
=

=∏α %%  (13) 

( ) ( )
1

| , | ,
N

i i
i

p c d Gamma w c d
=
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where 

( ) 1T −
= +Σ Φ WΦ A    (15) 

T=μ ΣΦ Wy     (16) 
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1
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where 

2
1 1

1
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( )

N T T
i i i i ii

N

w y
N tr

γ − =

+

− +
=

− −
∑ β x x Σ x

I AΣ
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 (19) 

 
Here, Φ  represents the matrix whose row vectors are 

1 , , ,T T
N(x ) (x )Lφ φ  and W and A denote a diagonal ma-

trix with ( )iw γE  and ( )iαE  as the i-th diagonal element, 
respectively. To train RRVM by using training dataset, 
we randomly select initial values for a, b, c, d and .γ  In 
this paper, we set to 

510a b −= =  and 1.c d γ= = =  Next, 
by using Eq. (15)-Eq. (18), update the hyperparameters 

, , , ,ia b cΣ μ %% % and 
i

d% and re-estimate γ  in Eq. (19). The 
posterior distributions in Eq. (12)-Eq. (14) can be char-
acterized with the updated hyperparameter values. Fi-
nally, compute the lower bound value [ ( , , )]Q β α wL , 
which is defined in Eq. (20) and repeat those works until 
the change of [ ( , , )]Q β α wL  is smaller than a predefined 
threshold.  

 
[ ( , , )] [log ( | , , , )] [log ( | )]Q p pγ= +β α w y β α w β αL E E  

[log ( | , )] [log ( | , )]p a b p c d+ +α wE E  (20) 
   [log ( )] [log ( )] [log ( )]Q Q Q− − −β α wβ α wE E E  

 
Given a new input x, the predictive distribution over y 
can be evaluated using the following approximated dis-
tribution:  

 
1( | , , ) ( | , { ( ) } )T Tp y N y wγ γ −= +x y μ (x) (x) Σ (x)φ φ φE  (21) 

 
where w denotes a weight corresponding to a new input 
x(see the Hwang et al. (2014) for the detail derivatives).  

4.  EXPERIMENTAL RESULTS 

The plasma etching process responses were exam-
ined by using a variety of modeling techniques: multiple 
linear regression (MLR), multilayer perceptron neural 
network (NNet), RVR, and RRVM. 

MLR is widely employed prediction model in di-
verse applications, which assumes a linear relation be-
tween independent variables and dependent ones. MLR 
is simple and computationally efficient, but it has poor 
prediction results when the relation between variables is 
nonlinear (Hastie et al., 2001). 

The architecture of NNet is composed as follows: 
seven neurons in the input layer, single hidden layer 
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with ten neurons and one output neuron. Tangent sig-
moid function and linear transfer function are used for 
activation functions in the hidden and output layer. The 
prediction models were created using all fifteen OES 
data from plasma etch process, and for the limited sam-
ples, we used five-fold cross-validations. In addition, 
Gaussian kernels were used for the RVR and RRVM. A 
Gaussian kernel is defined as follows: 

 
1 2

1 2 2( , ) exp
2

x x
K x x

σ
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

  (22) 

 
where σ  is the width parameter, which is optimized by 
the validation dataset. The parameter σ  was varied and 
the values of 

10 9 9 102 , 2 , , 2 , 2σ − −= L  were obtained. This 
kernel parameter was optimized in terms of the predic-
tion accuracy by using the validation dataset. By using 
the selected parameters, the prediction accuracy for the 
testing dataset was calculated. 

To compare between the models, two performance 
measures are computed as follows: Root mean squared 
error (RMSE) and normalized root mean squared error 
(NRMSE). 

 
2

1

1RMSE ( )
tn

i i
t i

y y
n

∧

=
= −∑   (23) 

2

1

1 1NRMSE ( )
tn

i i
t t i

y y
m n

∧

=

⎛ ⎞
⎜ ⎟= −
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⎝ ⎠

∑   (24) 

where tn  is the number of samples, tm  is the mean of the 
observed value of samples, iy  is the i-th observed value, 
and ˆiy  is the i-th predicted value. The smaller value of 
these performance measures represents the better predic-
tive accuracy of the model.  

Table 2 shows the comparative results of testing data 
in terms of RMSE and NRMSE in case of the etch rate 
response. As seen in Table 2, the proposed RRVM with 
statistical features shows better results than existing mo-
dels in terms of average performance of five-cross vali-
dation data. Specifically, the RRVM yielded the average 
NRMSE of 0.300 while the MLR yielded the average 
error of 1.125. On the other hand, Table 3 shows the 
prediction errors of each model, addressing the non-uni-
formity. In Table 3, the MLR model exhibits large NRMSEs, 
1.220 on average while RRVM has average NRMSE of 
0.224. Therefore, the proposed RRVM regression model 
with statistical features demonstrates much better per-
formance than the existing approaches. 

In addition, the results of comparison with regres-
sion models with original features are shown in Table 4 
and Table 5. In is shown in those tables that the accu-
racy of regression models with original features is worse 
than that of the regression models with the selected fea-
tures because the number of original features is much 
bigger than the number of observations and contains 
much noises in original features. 

In addition, Figure 3 and Figure 4 illustrates each 
prediction modeling results for the etch rate and unifor-
mity, respectively. As evidenced by the smaller perfor-

 
Table 2. Summary of the accuracy results for etch rate with statistical features 

CV dataset Prediction 
models 

Performance 
measures 1 2 3 4 5 

Average 

RMSE 893 2311 3481 1175 5352 2642 MLR 
NRMSE 0.312 1.051 1.336 0.445 2.482 1.125 
RMSE 1075 1245 1395 1420 658 1159 NNet 

NRMSE 0.375 0.566 0.535 0.538 0.305 0.464 
RMSE 865 1369 1721 401 409 953 RVM 

NRMSE 0.302 0.622 0.661 0.152 0.190 0.385 
RMSE 872 974 662 276 853 727 RRVM 

NRMSE 0.304 0.443 0.254 0.105 0.396 0.300 
 

Table 3. Summary of the accuracy results for non-uniformity with statistical features 

CV dataset Prediction 
models 

Performance 
measures 1 2 3 4 5 

Average 

RMSE 2.366 3.677 9.230 2.471 10.256 5.600 MLR 
NRMSE 0.399 0.919 1.978 0.608 2.200 1.220 
RMSE 2.237 2.453 1.419 1.192 3.037 2.068 NNet 

NRMSE 0.377 0.613 0.304 0.293 0.651 0.448 
RMSE 2.275 5.368 4.750 1.077 1.185 2.931 RVM 

NRMSE 0.383 1.342 1.018 0.265 0.254 0.652 
RMSE 1.983 1.269 0.660 0.618 0.811 1.068 RRVM 

NRMSE 0.334 0.317 0.141 0.152 0.174 0.224 
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mance measure, as shown in those figures, RRVM model 
presents the best prediction results for the testing data. 
Even though the prediction performance for the training 

data is similar to each model, RVM and RRVM model 
demonstrates better performance for the testing data 
compared with that of MLR and NNet mode. 

Table 4. Summary of the accuracy results for etch rate with original features 

CV dataset Prediction 
models 

Performance 
measures 1 2 3 4 5 

Average 

RMSE 1048 2947 3974 2184 6847 3400 
MLR 

NRMSE 0.366 1.340 1.525 0.827 3.175 1.717 
RMSE 1097 1473 1408 1573 776 1265 

NNet 
NRMSE 0.383 0.670 0.540 0.596 0.360 0.541 
RMSE 903 1428 1726 573 521 1030 

RVM 
NRMSE 0.315 0.649 0.662 0.217 0.242 0.442 
RMSE 912 1047 836 375 903 815 

RRVM 
NRMSE 0.318 0.476 0.321 0.142 0.419 0.339 

 
Table 5. Summary of the accuracy results for non-uniformity with original features 

CV dataset Prediction 
models 

Performance 
measures 1 2 3 4 5 

Average 

RMSE 3.738 4.037 9.974 3.937 12.387 6.815 
MLR 

NRMSE 0.630 1.009 2.137 0.968 2.654 1.480 
RMSE 2.573 2.980 2.473 1.976 4.583 2.917 

NNet 
NRMSE 0.434 0.745 0.530 0.486 0.982 0.635 
RMSE 2.475 5.837 3.274 1.384 1.387 2.876 

RVM 
NRMSE 0.417 1.459 0.702 0.340 0.297 0.643 
RMSE 2.284 2.047 0.937 1.184 1.385 1.567 

RRVM 
NRMSE 0.385 0.512 0.201 0.291 0.297 0.337 
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Figure 3. Prediction modeling results for the etch rate. 
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To explore the superiority of statistical features, we 
compared the prediction performance with popular exist-
ing dimensional reduction methods including linear and 
non-linear methods such as principal component analy-
sis (PCA), partial least squares (PLS), kernel principal 
component analysis (KPCA), and kernel partial least sq-
uares (KPLS) (Rosipal and Trejo, 2001). For fair com-
parison, we used a RRVM model with seven principal 
components (PCs) and seven latent variables (LVs) be-
cause seven PCs in PCA and seven LVs in PLS can ex-
plain 96.1% variance and 97.5% variance of OES data, 
respectively. For KPCA and KPLS method, Gaussian 
kernel function is used. Figure 5 shows that even though 
the performance of non-linear methods is better than 
that of linear methods, the regression accuracy based on 
statistical features shows the best performance among 
other existing methods. 

In summary, the experimental results validate our 
approach based on the proposed statistical features for 
effective characterization of OES data for the prediction 
of etch rate and non-uniformity.  

5.  CONCLUSIONS  

In this paper we proposed a statistical quantitative 
method for modeling etch responses, such as the etch 
rate and uniformity, by using optical emission spectros-
copy (OES) data in a plasma etch process. We used the 
experimental results for validating the effectiveness of 
the proposed RRVM with statistical features in dealing 

with OES data, which exhibit several characteristics, 
such as nonlinearity and high dimensionality. This sug-
gests that the proposed procedure can be utilized for 
improving the etch process yield and the manufactura-
bility of the overall process in the field of semiconductor 
engineering. 

Additional applications of our statistical features-
based approach that will be investigated in the future 
work include analysis of spectral data by taking into 
consideration the changes attributed to the atomic spe-
cies, physical reactions, and process conditions in semi-
conductor manufacturing. Monitoring the optical emis-
sion of various emission lines generated by reaction 
products or reagents is an additional interesting topic for 
future research.  
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Figure 5. Summary of the NRMSEs for dimension reduction methods. 
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