• Title/Summary/Keyword: High Dimensional Data

Search Result 1,554, Processing Time 0.056 seconds

Flow Visualization Model Based on B-spline Volume (비스플라인 부피에 기초한 유동 가시화 모델)

  • 박상근;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 1997
  • Scientific volume visualization addresses the representation, manipulation, and rendering of volumetric data sets, providing mechanisms for looking closely into structures and understanding their complexity and dynamics. In the past several years, a tremendous amount of research and development has been directed toward algorithms and data modeling methods for a scientific data visualization. But there has been very little work on developing a mathematical volume model that feeds this visualization. Especially, in flow visualization, the volume model has long been required as a guidance to display the very large amounts of data resulting from numerical simulations. In this paper, we focus on the mathematical representation of volumetric data sets and the method of extracting meaningful information from the derived volume model. For this purpose, a B-spline volume is extended to a high dimensional trivariate model which is called as a flow visualization model in this paper. Two three-dimensional examples are presented to demonstrate the capabilities of this model.

  • PDF

3-Dimensional Concurrent Geometric Modeling on High Speed Network (초고속 통신망상에서 3차원 동시 형상 설계)

  • 정운용;한순흥
    • The Journal of Society for e-Business Studies
    • /
    • v.1 no.1
    • /
    • pp.141-157
    • /
    • 1996
  • Data sharing is a major challenge to implement CALS. STEP is the international standard for the product model data exchange among heterogeneous systems and plays a key role in CALS. Advances in computer networks are rapidly changing the product development processes. The network oriented modeling system premises to integrate design activities across the enterprise. To achieve goals of CALS 3-dimensional concurrent modeling that complies international standard is required since integrity and common perception of product data can be assured. This paper presents 3-dimensional concurrent geometric modeling on high speed network using STEP and methodologies.

  • PDF

An Incremental Similarity Computation Method in Agglomerative Hierarchical Clustering

  • Jung, Sung-young;Kim, Taek-soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.579-583
    • /
    • 2001
  • In the area of data clustering in high dimensional space, one of the difficulties is the time-consuming process for computing vector similarities. It becomes worse in the case of the agglomerative algorithm with the group-average link and mean centroid method, because the cluster similarity must be recomputed whenever the cluster center moves after the merging step. As a solution of this problem, we present an incremental method of similarity computation, which substitutes the scalar calculation for the time-consuming calculation of vector similarity with several measures such as the squared distance, inner product, cosine, and minimum variance. Experimental results show that it makes clustering speed significantly fast for very high dimensional data.

  • PDF

Comprehensive review on Clustering Techniques and its application on High Dimensional Data

  • Alam, Afroj;Muqeem, Mohd;Ahmad, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.237-244
    • /
    • 2021
  • Clustering is a most powerful un-supervised machine learning techniques for division of instances into homogenous group, which is called cluster. This Clustering is mainly used for generating a good quality of cluster through which we can discover hidden patterns and knowledge from the large datasets. It has huge application in different field like in medicine field, healthcare, gene-expression, image processing, agriculture, fraud detection, profitability analysis etc. The goal of this paper is to explore both hierarchical as well as partitioning clustering and understanding their problem with various approaches for their solution. Among different clustering K-means is better than other clustering due to its linear time complexity. Further this paper also focused on data mining that dealing with high-dimensional datasets with their problems and their existing approaches for their relevancy

Efficient Searching Technique for Nearest Neighbor Object in High-Dimensional Data (고차원 데이터의 효율적인 최근접 객체 검색 기법)

  • Kim, Jin-Ho;Park, Young-Bae
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.269-280
    • /
    • 2004
  • The Pyramid-Technique is based on mapping n-dimensional space data into one-dimensional data and expresses it as a B+-tree. By solving the problem of search time complexity the pyramid technique also prevents the effect of "phenomenon of dimensional curse" which is caused by treatment of hypercube range query in n-dimensional data space. The SPY-TEC applies the space division strategy in pyramid method and uses spherical range query suitable for similarity search so that Improves the search performance. However, nearest neighbor query is more efficient than range query because it is difficult to specify range in similarity search. Previously proposed index methods perform well only in the specific distribution of data. In this paper, we propose an efficient searching technique for nearest neighbor object using PdR-Tree suggested to improve the search performance for high dimensional data such as multimedia data. Test results, which uses simulation data with various distribution as well as real data, demonstrate that PdR-Tree surpasses both the Pyramid-Technique and SPY-TEC in views of search performance.rformance.

Nonlinear PLS Monitoring Applied to An Wastewater Treatment Process

  • Bang, Yoon-Ho;Yoo, Chang-Kyoo;Park, Sang-Wook;Lee, In-Beum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.102.1-102
    • /
    • 2001
  • In this work, extensions to partial least squares (PLS) for wastewater treatment (WWT) process monitoring are discussed. Conventional data gathered by monitoring WWT systems are usually time varying, high dimensional, correlated and nonlinear, PLS has been shown to be an efficient approach in modeling and monitoring high dimensional and correlated data. To represent dynamic and nonlinear features of the data several kinds of dynamic nonlinear PLS (DNLPLS) models have been proposed. However, the complexity and ambiguity of the models make them unsuitable for WWT monitoring, Recently, dynamic fuzzy PLS (DFPLS) was proposed ...

  • PDF

k-NN Join Based on LSH in Big Data Environment

  • Ji, Jiaqi;Chung, Yeongjee
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 2018
  • k-Nearest neighbor join (k-NN Join) is a computationally intensive algorithm that is designed to find k-nearest neighbors from a dataset S for every object in another dataset R. Most related studies on k-NN Join are based on single-computer operations. As the data dimensions and data volume increase, running the k-NN Join algorithm on a single computer cannot generate results quickly. To solve this scalability problem, we introduce the locality-sensitive hashing (LSH) k-NN Join algorithm implemented in Spark, an approach for high-dimensional big data. LSH is used to map similar data onto the same bucket, which can reduce the data search scope. In order to achieve parallel implementation of the algorithm on multiple computers, the Spark framework is used to accelerate the computation of distances between objects in a cluster. Results show that our proposed approach is fast and accurate for high-dimensional and big data.

Adaptive data hiding scheme based on magic matrix of flexible dimension

  • Wu, Hua;Horng, Ji-Hwei;Chang, Chin-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3348-3364
    • /
    • 2021
  • Magic matrix-based data hiding schemes are applied to transmit secret information through open communication channels safely. With the development of various magic matrices, some higher dimensional magic matrices are proposed for improving the security level. However, with the limitation of computing resource and the requirement of real time processing, these higher dimensional magic matrix-based methods are not advantageous. Hence, a kind of data hiding scheme based on a single or a group of multi-dimensional flexible magic matrices is proposed in this paper, whose magic matrix can be expanded to higher dimensional ones with less computing resource. Furthermore, an adaptive mechanism is proposed to reduce the embedding distortion. Adapting to the secret data, the magic matrix with least distortion is chosen to embed the data and a marker bit is exploited to record the choice. Experimental results confirm that the proposed scheme hides data with high security and a better visual quality.

An Effective Algorithm for Subdimensional Clustering of High Dimensional Data (고차원 데이터를 부분차원 클러스터링하는 효과적인 알고리즘)

  • Park, Jong-Soo;Kim, Do-Hyung
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.417-426
    • /
    • 2003
  • The problem of finding clusters in high dimensional data is well known in the field of data mining for its importance, because cluster analysis has been widely used in numerous applications, including pattern recognition, data analysis, and market analysis. Recently, a new framework, projected clustering, to solve the problem was suggested, which first select subdimensions of each candidate cluster and then each input point is assigned to the nearest cluster according to a distance function based on the chosen subdimensions of the clusters. We propose a new algorithm for subdimensional clustering of high dimensional data, each of the three major steps of which partitions the input points into several candidate clutters with proper numbers of points, filters the clusters that can not be useful in the next steps, and then merges the remaining clusters into the predefined number of clusters using a closeness function, respectively. The result of extensive experiments shows that the proposed algorithm exhibits better performance than the other existent clustering algorithms.

Design of Data Encoding Algorithm for a Two Dimensional Bar Code (2차원 바코드를 위한 데이터 부호화 알고리즘 설계)

  • Jeon, Seong-Goo;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.171-174
    • /
    • 2005
  • In this paper, we propose a new data encoding algorithm for a two-dimensional bar code system. In general, the one-dimensional bar code is just a key which can access detailed information to the host computer database. But the two-dimensional bar code is a new technology which can obtain high density information without access to the host computer database. We implemented the encoding algorithm for Data Matrix bar code which is the most widely used among the many kinds of two-dimensional bar codes in the field of marking using Digital Signal Processor (TMS320C31). The performance of the proposed algorithm is verified by comparing the imprinted symbols on the steel surfaces with the codes which are decoded by a bar code reader.

  • PDF