• Title/Summary/Keyword: High Cycle Vibration Fatigue

Search Result 32, Processing Time 0.027 seconds

Excess Vibration Phenomena and Soundness of Drain Piping in Moisture Separator Reheat Exchanger (습분 분리 재열기 배수배관의 과도진동과 배관 건전성)

  • Kim, Yeon-Whan;Kim, Hee-Soo;Bae, Yong-Chae;Lee, Hyun;Lee, Young-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.393-398
    • /
    • 2001
  • Pulsations, vibration and stress are the basic dynamic phenomena in power plant piping systems which directly affect system reliability. These phenomena are both acoustical and mechanical in nature and are closely interrelated. It was noticed that thermodynamic parameters were changed after replacing with new type tube bundles of reheat exchanger. It was reported later that the drain piping connecting the new bundle header with the associated drain tank is regularly pulsating at about every 3 second with 13.4㎐ and 7.5mm, p-p in amplitude. This amplitude is about 6 times higher than reference level of sound piping. The results of finite element analysis of the pipeline showed that its dominant natural frequency is 13.4㎐. The soundness is predicted whether the bending dynamic stress evaluated excesses the maximum allowable high cycle fatigue stress or not by the measured amplitude of vibration.

  • PDF

Composite components damage tracking and dynamic structural behaviour with AI algorithm

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Meng, Yahui;Wang, Ruei-Yuan;Fu, Qiuli;Chen, Timothy
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.151-159
    • /
    • 2022
  • This study discusses a hypothetical method for tracking the propagation damage of Carbon Reinforced Fiber Plastic (CRFP) components underneath vibration fatigue. The High Cycle Fatigue (HCF) behavior of composite materials was generally not as severe as this of admixture alloys. Each fissure initiation in metal alloys may quickly lead to the opposite. The HCF behavior of composite materials is usually an extended state of continuous degradation between resin and fibers. The increase is that any layer-to-layer contact conditions during delamination opening will cause a dynamic complex response, which may be non-linear and dependent on temperature. Usually resulted from major deformations, it could be properly surveyed by a non-contact investigation system. Here, this article discusses the scanning laser application of that vibrometer to track the propagation damage of CRFP components underneath fatigue vibration loading. Thus, the study purpose is to demonstrate that the investigation method can implement systematically a series of hypothetical means and dynamic characteristics. The application of the relaxation method based on numerical simulation in the Artificial Intelligence (AI) Evolved Bat (EB) strategy to reduce the dynamic response is proved by numerical simulation. Thermal imaging cameras are also measurement parts of the chain and provide information in qualitative about the temperature location of the evolution and hot spots of damage.

Vibration Localization of a Periodic Structure Undertaking External Force (외력을 받는 주기적 구조물의 진동 국부화)

  • Kim, Jae-Young;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.543-548
    • /
    • 2000
  • Vibration localization of a periodic structure with mistuning is presented in this paper. Mistuning in periodic structures can lead to an increase of the forced response which is much larger than those of perfectly tuned assembly. Thus, mistuning has a critical impact on high cycle fatigue in structures, and it is of great importance to predict the mistuned forced response in efficient manner. In this paper, forced response of a coupled pendulum is investigated to identify localization effects of periodic structures. The effects of mistuning and damping on the maximum forced response are examined. It is seen that in certain condition of mistuning and coupling, strong localization occurs and this can be significant under weak damping.

  • PDF

Reliability Design Analysis for Underwater Buriend PBA Based on PoF (고장물리 기반 수중 매설형 PBA에 대한 신뢰성 설계 연구)

  • Kim, Ji-Young;Lee, Ki-Won;Yoon, Hong-Woo;Lee, Seung-Jin;Heo, Jun-Ki;Kwon, Hyeong-Ahn
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.280-288
    • /
    • 2017
  • Purpose: PBA buried in underwater requires high reliability because of its mission critical characteristic and harsh operational environment during its life cycle. Therefore, various reliability improvement activities are necessary. The defect on PBA manufacturing process have been studied, as a result, many activities and standards have been presented. However, there are less studies regarding failure pattern on physical features based on design. In this paper, we studied a possible failure patten based on physical features that is related with manufacturing process of PBA. And reliability improvement design based on PoF (Physical of Failure) were intruduced in this paper. Methods: A reliability prediction simulation were performed on the components A and B of the H system using Sherlock Software which is a PoF commercial tool from DFR solution. Solder fatigue and PTH fatigue analysis based on thermal cycling profiles and random vibration was analyzed on three earthquake response spectrum. Result: It was validated that life time and reliability improvement design through solder fatigue and PTH fatigue analysis in case of component. For compoenet B, random vibration fatigue was additionally analyzed and validated reliability for earthquakes profile. Conclusion: In design stage prior to manufacturing, PoF can be analyzed, and it is possible to make a reliability improvement/validated design using design data. This study can be applied in every design step and contribute to make more stable development product.

Online Load Torque Ripple Compensator for Single Rolling Piston Compressor (싱글 로터리 컴프레셔의 온라인 부하 토크리플 보상기)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.457-462
    • /
    • 2014
  • Given their low cost, single rolling piston compressors (SRPC) are utilized in low-power room air-conditioning systems. The SRPC cycle is composed of one compression and discharge process per mechanical rotation. The load torque is high during the compression process of the refrigerants and low during the discharge process of the refrigerants. This load torque variation induces a speed ripple and severe vibration, which cause fatigue failures in the pipes and compressor parts, particularly under low-speed conditions. To reduce the vibration, the compressor usually operates at a high-speed range, where the rotor and piston inertia reduce the vibration. At a low speed, a predefined feed-forward load torque compensator is used to minimize the speed ripple and vibration. However, given that the load torque varies with temperature, pressure, and speed, a predefined load torque table based on one operating condition is not appropriate. This study proposes an online load torque compensator for SRPC. The proposed method utilizes the speed ripple as a load torque ripple factor. The speed ripple is transformed into a frequency domain and compensates each frequency harmonic term in an independent feed-forward manner. Experimental results are presented to verify the proposed method.

Study on the Effects of System Parameters on the High Cycle Fatigue Life Based on Structural Dynamic Analysis of a Turbine Blade System (터빈 블레이드의 구조동역학해석에 근거한 시스템 인자들의 고사이클 피로수명에 대한 영향도분석)

  • Kwon, Sung-Hun;Song, Pil-Gon;Park, Jong-Hyun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.875-879
    • /
    • 2007
  • The effects of the statistical properties of the Coulomb friction coefficients on the dynamic responses of a galloping quadruped robot are investigated in this paper. In general, the Coulomb friction coefficients are assumed to be deterministic for a controller design to achieve required motion characteristics. However, the friction coefficients between the ground and the robot legs are not constant in reality. Therefore, statistical characteristics of the friction coefficients need to be considered for a multi-body modeling of the robot galloping on the ground. The effects of the statistical properties on the dynamic responses of the quadruped robots are investigated.

  • PDF

Variation of Dynamic Characteristics of a Low Pressure Turbine Blade with Crack Length (저압터빈 블레이드의 균열 길이에 따른 동특성 변화)

  • Yang, Kyeong-Hyeon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1281-1288
    • /
    • 2009
  • Variation of dynamic characteristics of a low pressure turbine blade with crack length is studied in this paper via both experiments and finite element model. Since most of the turbine blades used in domestic power plants are imported from abroad, it is necessary to understand their dynamic behavior in advance. When experimentally obtained natural frequencies and mode shapes are compared with those from FEM results, they are close to each other in their magnitude. Then, it is more feasible to use finite element model for analyzing the dynamic characteristics of a blade under various operation conditions (rotation speed, temperature, etc) as well as with a crack in the blade.

Dynamic Response Localization of Simple Periodic Structures Undertaking External Harmonic Forces (조화 외력을 받는 간단한 주기적 구조물의 동적 응답 국부화)

  • 김재영;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.175-180
    • /
    • 2001
  • Dynamic response localization of simple mistuned periodic structures is presented in this paper Mistuning in periodic structures can cause forced responses that are much larger than those of perfectly tuned structures. So mistuning results in the critical impact on high cycle fatigue of structures. Thus, it is of great importance to predict the mistuned forced response in an efficient way. In this paper, forced responses of coupled pendulum systems are investigated to identify the localization effect of periodic structures. The effects of mistuning and damping on the maximum forced response are examined. It is found that certain conditions of mistuning and coupling can cause strong localization and the localization becomes significant under weak damping. It is also found that the maximum forced response increases as the number of Periodic structures increases.

  • PDF

Numerical framework for stress cycle assessment of cables under vortex shedding excitations

  • Ruiz, Rafael O.;Loyola, Luis;Beltran, Juan F.
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.225-238
    • /
    • 2019
  • In this paper a novel and efficient computational framework to estimate the stress range versus number of cycles curves experienced by a cable due to external excitations (e.g., seismic excitations, traffic and wind-induced vibrations, among others) is proposed. This study is limited to the wind-cable interaction governed by the Vortex Shedding mechanism which mainly rules cables vibrations at low amplitudes that may lead to their failure due to bending fatigue damage. The algorithm relies on a stochastic approach to account for the uncertainties in the cable properties, initial conditions, damping, and wind excitation which are the variables that govern the wind-induced vibration phenomena in cables. These uncertainties are propagated adopting Monte Carlo simulations and the concept of importance sampling, which is used to reduce significantly the computational costs when new scenarios with different probabilistic models for the uncertainties are evaluated. A high fidelity cable model is also proposed, capturing the effect of its internal wires distribution and helix angles on the cables stress. Simulation results on a 15 mm diameter high-strength steel strand reveal that not accounting for the initial conditions uncertainties or using a coarse wind speed discretization lead to an underestimation of the stress range experienced by the cable. In addition, parametric studies illustrate the computational efficiency of the algorithm at estimating new scenarios with new probabilistic models, running 3000 times faster than the base case.

Fatigue Life Prediction of Medical Lift Column utilizing Finite Element Analysis (유한요소해석을 통한 의료용 리프트 칼럼의 피로수명 예측)

  • Cheon, Hee-Jun;Cho, Jin-Rae;Yang, Hee-Jun;Lee, Shi-Bok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.337-342
    • /
    • 2011
  • Medical lift column controlling the vertical position while supporting heavy eccentric load should have the high fatigue strength as well as the extremely low structural deflection and vibration in order to maintain the positioning accuracy. The lift column driven by a induction motor is generally in a three-step sliding boom structure and exhibits the time-varying stress distribution according to the up-and-down motion. This study is concerned with the numerical prediction of the fatigue strength of the lift column subject to the time-varying stress caused by the up-and-down motion. The stress variation during a motion cycle is obtained by finite element analysis and the fatigue life is predicted making use of Palmgren-miner's rule and S-N curves. In order to secure the numerical analysis reliability, a 3-D FEM, model in which the detailed lift column structure and the fitting parts are fully considered, is generated and the interfaces between lift column and pads are treated by the contact condition.