• 제목/요약/키워드: High Curie temperature materials

검색결과 57건 처리시간 0.024초

Effective Interdiffusion of Co/Pd multilayers

  • Kim, Jai-Young;Jan E. Evetts
    • Journal of Magnetics
    • /
    • 제2권3호
    • /
    • pp.86-92
    • /
    • 1997
  • An artificially modulated magnetic Co/Pd multilayer is one of the promising candidates for high density magneto-optic (MO) recording media in the wavelength of a blue laser beam, due to large Kerr rotation angle. However, since the Co/Pd multilayer is a non-equilibrium state in terms of free energy and MO recording is a kind of thermal recording which is conducted around Curie temperature (Tc) of the recording media, the assessment of the thermal stability in the Co/Pd multilayer is crucially important both for basic research and applications. As the parameter of the thermal stability in this research, effective interdiffusion coefficients (Deff) perpendicular to the interface of the Co/Pd multilayers are measured in terms of Ar sputtering pressure and heat treatment temperature. From the results of the research, we find out that the magnetic exchange energy between Co and Pd sublayers strongly affects Deff of the Co/Pd multilayers. This discovery will provide the understanding of the magnetic exchange energy in the effective interdiffusion process of a magnetic multilayer structure and suggest the operating temperature range for MO recording in the Co/Pd multilayer for the basic research and applications, respectively.

  • PDF

Na2Ti6O13를 도핑한 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 세라믹스의 미세구조와 Positive Temperature Coefficient of Resistivity 특성 (Microstructure and Positive Temperature Coefficient of Resistivity Characteristics of Na2Ti6O13-Doped 0.94BaTiO33-0.06(Bi0.5Na0.5)TiO3 Ceramics)

  • 차유정;정영훈;이영진;백종후;이우영;김대준
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.575-580
    • /
    • 2010
  • The microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.1 mol%$Na_2Ti_6O_{13}$ doped $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$ (BBNT-NT001) ceramics sintered at various temperatures from $1200^{\circ}C$ to $1350^{\circ}C$ were investigated in order to develop eco-friendly PTCR thermistors with a high Curie temperature ($T_C$). Resulting thermistors showed a perovskite structure with a tetragonal symmetry. When sintered at $1200^{\circ}C$, the specimen had a uniform microstructure with small grains. However, abnormally grown grains started to appear at $1250^{\circ}C$ and a homogeneous microstructure with large grains was exhibited when the sintering temperature reached $1325^{\circ}C$. When the temperature exceeded $1325^{\circ}C$, the grain growth was inhibited due to the numerous nucleation sites generated at the extremely high temperature. It is considered that $Na_2Ti_6O_{13}$ is responsible for the grain growth of the $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$) ceramics by forming a liquid phase during the sintering at around $1300^{\circ}C$. The grain growth of the BBNT-NT001 ceramics was significantly correlated with a decrease of resistivity. All the specimens were observed to have PTCR characteristics except for the sample sintered at $1200^{\circ}C$. The BBNT-NT001 ceramics had significantly decreased $\tilde{n}_{rt}$ and increased resistivity jump with increasing sintering temperature at from $1200^{\circ}C$ to $1325^{\circ}C$. Especially, the BBNT-NT001 ceramics sintered at $1325^{\circ}C$ exhibited superior PTCR characteristics of low resistivity at room temperature ($122\;{\Omega}{\cdot}cm$), high resistivity jump ($1.28{\times}10^4$), high resistivity temperature factor (20.4%/$^{\circ}C$), and a high Tc of $157.9^{\circ}C$.

전단 모드 압전 에너지 하베스팅용 친환경 세라믹 소재 (Eco-friendly Ceramic Materials for Shear Mode Piezoelectric Energy Harvesting)

  • 한승호;박휘열;강형원;이형규
    • 한국전기전자재료학회논문지
    • /
    • 제25권9호
    • /
    • pp.702-710
    • /
    • 2012
  • Eco-friendly $(Na,K)NbO_3$ (NKN)-based piezoelectric ceramic materials were fabricated by conventional ceramic method for shear mode piezoelectric energy harvesting application. $NKN-LiTaO_3$ (LT) based compositions were adopted for the high $d_{15}{\times}g_{15}$ which is proportional to harvested energy density. The composition $0.935(Na_{0.535}K_{0.485})NbO_3-0.065LiTaO_3$ was found to be lie on the boundary of tetragonal and orthorhombic phases. With reducing Ta content, the dielectric constant decreased gradually while maintaining high $d_{15}$, which resulted in increased $d_{15}{\times}g_{15}$. The composition $0.935(Na_{0.535}K_{0.485})NbO_3-0.065Li(Nb_{0.990}Ta_{0.010})O_3$ was found to possess excellent piezoelectric and electromechanical properties ($d_{15}{\times}g_{15}=29\;pm^2/N$, $d_{15}$ = 417 pC/N, $k_{15}$ = 0.55), and high curie temperature ($T_c=455^{\circ}C$).

Enhanced Magnetic Properties of BiFe1-$_xNi_xO_3$

  • Yoo, Y.J.;Hwang, J.S.;Park, J.S.;Kang, J.H.;Lee, B.W.;Lee, S.J.;Kim, K.W.;Lee, Y.P.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.183-183
    • /
    • 2011
  • Multiferroic materials have been widely studied in recent years, because of their abundant physics and potential applications in the sensors, data storage, and spintronics. $BiFeO_3$ is one of the well-known single-phase multiferroic materials with $ABO_3$ structure and G-type antiferromagnetic behavior below the Neel temperature $T_N$ ~ 643 K, but the ferroelectric behavior below the Curie temperature $T_c$~1,103 K. In this study, the $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramics were prepared by solid-state reaction and rapid sintering with high-purity $Bi_2O_32$, $Fe_3O_4$ and NiO powders. The powders of stoichiometric proportions were mixed, as in the previous investigations, and calcined at 450$^{\circ}C$ for $BiFe_{1-x}Ni_xO_3$ for 24 h. The obtained powders were grinded, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, which has been heated up to 800$^{\circ}C$ and sintered in air for 20 min. The sintered disks were taken out from the oven and cooled to room temperature within several min. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu K${\alpha}$ radiation. The Raman measurements were carried out by employing a hand-made Raman spectrometer with 514.5-nm-excitation $Ar^+$ laser source under air ambient condition on a focused area of 1-${\mu}m$ diameter. The field-dependent magnetization measurements were performed with a superconducting quantum-interference-device magnetometer.

  • PDF

Structural and Magnetic Properties of Mechanochemically Prepared Li Ferrite Nanoparticles

  • Haddadi, M.;Mozaffari, M.;Amighian, J.
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.169-174
    • /
    • 2017
  • In this work, lithium ferrite ($Li_{0.5}Fe_{2.5}O_4$) nanoparticles were prepared via mechanochemical processing and subsequent heat treatment at a relatively low ($600^{\circ}C$) calcining temperature. The raw materials used were high purity $Fe_2O_3$ and $Li_2CO_3$ that were milled for between 2 and 20 h. The milled powders were then calcined at temperatures of 500 and $600^{\circ}C$ for 5 h in air. XRD results show that optimum conditions to obtain single phase lithium ferrite nanoparticles with a mean crystallite size of about 23 nm, using Scherrer's formula, are 10 h milling and calcination at $600^{\circ}C$. Saturation magnetization and coercivity of the single phase Li ferrite nanoparticles are 44.6 emu/g and 100 Oe respectively, which are both smaller than those of the bulk Li ferrite. The Curie temperature of the single sample was determined by a Faraday balance, which is $578^{\circ}C$ and smaller than that of bulk Li ferrite.

0.96K0.5Na0.5NbO3-0.04SrTiO3 세라믹스의 상전이와 압전 특성에 대한 Li2CO3 도핑 효과 (Effect of Li2CO3 Doping on Phase Transition and Piezoelectric Properties of 0.96K0.5Na0.5NbO3-0.04SrTiO3 Ceramics)

  • 박재영;즈엉 짱 안;이상섭;안창원;김병우;한형수;이재신
    • 한국전기전자재료학회논문지
    • /
    • 제36권5호
    • /
    • pp.513-519
    • /
    • 2023
  • It was reported that a tetragonal phase can be stabilized with maintaining good piezoelectric properties when Na0.5K0.5NbO3 (KNN) is modified with 0.06 mol SrTiO3. However, such a high amount of SrTiO3 leads not only to poor sinterability but low Curie temperature (TC). To maintain high TC with good piezoelectric properties in KNN-based lead-free piezoelectric ceramics, this study investigates the effect of Li-doping on the dielectric and piezoelectric properties of 0.96Na0.5K0.5NbO3-0.04SrTiO3 (KNN-4ST) ceramics. As a result, the orthorhombic-tetragonal phase transition was observed at 2 mol% Li2CO3 modified KNN-4ST ceramics, whose TC, d33 and kp values are 328℃, 165pC/N and 0.33, respectively.

Processing, structure, and properties of lead-free piezoelectric NBT-BT

  • Mhin, Sungwook;Lee, Jung-Il;Ryu, Jeong Ho
    • 한국결정성장학회지
    • /
    • 제25권4호
    • /
    • pp.160-165
    • /
    • 2015
  • Lead-free piezoelectric materials have been actively studied to substitute for conventional PZT based solid solution, $Pb(Zr_xTi_{1-x}O_3)$, which occurs unavoidable PbO during the sintering process. Among them, Bismuth Sodium Titanate, $Na_{0.5}Bi_{0.5}TiO_3$ (abbreviated as NBT) based solid solution is attracted for the one of excellent candidates which shows the strong ferroelectricity, Curie temperature (Tc), remnant polarization (Pr) and coercive field (Ec). Especially, the solid solution of rhombohedral phase NBT with tetragonal perovskite phase has a rhombohedral - tetragonal morphotropic phase boundary. Modified NBT with tetragonal perovskite at the region of MPB can be applied for high frequency ultrasonic application because of not only its low permittivity, high electrocoupling factor and high mechanical strength, but also effective piezoelectric activity by poling. In this study, solid state ceramic processing of NBT and modified NBT, $(Na_{0.5}Bi_{0.5})_{0.93}Ba_{0.7}TiO_3$ (abbreviated as NBT-7BT), at the region of MPB using 7 % $BaTiO_3$ as a tetragonal perovskite was introduced and the structure between NBT and NBT-7BT were analyzed using rietveld refinement. Also, the ferroelectric and piezoelectric properties of NBT-7BT such as permittivity, piezoelectric constant, polarization hysteresis and strain hysteresis loop were compared with those of pure NBT.

Ni-Zn Ferrite의 조성성분 및 소결온도에 따른 물리적 특성의 실험적 연구 (The Effect of Chemical Composition and Sintering Temperature on the Experiment of Physical Properties of Ni-Zn Ferrite)

  • 고재귀
    • 한국자기학회지
    • /
    • 제16권5호
    • /
    • pp.255-260
    • /
    • 2006
  • 기본조성 $(Ni_{0.35}Cu_{0.2}Zn_{0.45})_{1.02}(Fe_2O_3)_{0.98}$과 NiO 비율을 증가시키고 ZnO을 감소시킨 또 다른 기본조성 $(Ni_{0.4}Cu_{0.2}Zn_{0.4})_{1.02}(Fe_2O_3)_{0.98}$에 grain boundary의 높은 저항층을 형성하고 flux로서 사용하기 위해서 0.1 mol% $CaCO_3$와 입자의 성장을 촉진시켜 낮은 손실, 높은 투자율을 얻기 위한 목적으로 $V_2O_5$를 0.03mo1% 첨가하였다. 이들 원료들을 혼합한 후 $600^{\circ}C$에서 2시간 동안 가소시킨 분말을 toroid 시편으로 만들어 소결온도 $1,050^{\circ}C,\;1,070^{\circ}C,\;1,100^{\circ}C$에서 각각 2시간 동안 공기 중에서 소결하였다. 각 시편들에 대한 밀도는 $4.90{\sim}5.10g/cm^3$으로 나타났고, 각 시편들의 고유저항은 $10^8{\sim}10^{12}{\Omega}-cm$으로 측정되었으며, 결정립의 크기는 대략 $3.0{\sim}8.0{\mu}m$이었다. 시편들의 자기유도 특성 값이 대부분 우수하게 나타났으며, 그 중에서도 기본조성 $(Ni_{0.4}Cu_{0.2}Zn_{0.4})_{1.02}(Fe_2O_3)_{0.98}$$CaCO_3$$V_2O_5$를 첨가하고 $1,070^{\circ}C$에서 소결한 시편의 특성 값이 잔류자기유도 1,660 G, 최대자기유도 4,000 G로 약간 더 우수하게 측정되었으며, 각각 시편들의 보자력은 $0.15{\sim}0.25\;Oe$로 전형적인 연자성 재료의 범위로 나타났다. 초투자율, 손실계수, 및 큐리온도는 각각 $2,948{\sim}2,997,\;171{\sim}208,\;191{\sim}202^{\circ}C$로 나타나 Ni-Zn ferrite에서 측정되는 값들과 대동소이했다. 물리적인 특성값(고유저항, 자기유도, 초투자율, 손실계수, 큐리온도 등)으로 미루어보아 각종 microwave 통신기기 core 및 고 투자율 deflection yoke core 등으로 사용이 가능하다.

Fe3O4/CoFe2O4 superlattices; MBE growth and magnetic properties

  • Quang, Van Nguyen;Shin, Yooleemi;Duong, Anh Tuan;Nguyen, Thi Minh Hai;Cho, Sunglae;Meny, Christian
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2016
  • Magnetite, Fe3O4, is a ferrimagnet with a cubic inverse spinel structure and exhibits a metal-insulator, Verwey, transition at about 120 K.[1] It is predicted to possess as half-metallic nature, 100% spin polarization, and high Curie temperature (850 K). Cobalt ferrite is one of the most important members of the ferrite family, which is characterized by its high coercivity, moderate magnetization and very high magnetocrystalline anisotropy. It has been reported that the CoFe2O4/Fe3O4 bilayers represent an unusual exchange-coupled system whose properties are due to the nature of the oxide-oxide super-exchange interactions at the interface [2]. In order to evaluate the effect of interface interactions on magnetic and transport properties of ferrite and cobalt ferrite, the CoFe2O4/Fe3O4 superlattices on MgO (100) substrate have been fabricated by molecular beam epitaxy (MBE) with the wave lengths of 50, and $200{\AA}$, called $25{\AA}/25{\AA}$ and $100{\AA}/100{\AA}$, respectively. Streaky RHEED patterns in sample $25{\AA}/25{\AA}$ indicate a very smooth surface and interface between layers. HR-TEM image show the good crystalline of sample $25{\AA}/25{\AA}$. Interestingly, magnetization curves showed a strong antiferromagnetic order, which was formed at the interfaces.

  • PDF

전기열량소자용 Ag 첨가량에 따른 K(Ta,Nb)O3 세라믹스의 구조적·전기적 특성 (Structural and Electrical Properties of K(Ta,Nb)O3 Ceramics with Variation of Ag Contents for Electrocaloric Devices)

  • 이민성;박병준;임정은;이삼행;이명규;박주석;이성갑
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.442-448
    • /
    • 2021
  • In this work, the (K1-xAgx)(Ta0.8Nb0.2)O3 (x=0.1-0.4) ceramics were fabricated using mixed-oxide method, and their structural and electrical properties were measured. All specimens represented a pseudo cubic structure with the lattice constant of 0.3989 nm. When 0.4 mol of Ag was added, second phases induced from metallic Ag and K2(Ta,Nb)6O16 phase were observed. Dielectric constant and dielectric loss of K(Ta0.8Nb0.2)O3 specimen doped with 0.3 mol of Ag were 2,737 and 0.446, respectively. The curie temperature was about -5℃, which does not change with Ag addition. The remanent polarization began to decrease sharply around 12~15℃, and the temperature at which the remanent polarization began to decrease as the applied voltage increased shifted to the high temperature side. The electrocaloric effect (ΔT) and electrocaloric efficiency (ΔT/ΔE) of the (K0.7Ag0.3)(Ta0.8Nb0.2)O3 ceramics were 0.01024℃ and 0.01825 KmV-1, respectively.