Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.9.702

Eco-friendly Ceramic Materials for Shear Mode Piezoelectric Energy Harvesting  

Han, Seung-Ho (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Park, Hwi-Yeol (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Kang, Hyung-Won (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Lee, Hyeung-Gyu (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.9, 2012 , pp. 702-710 More about this Journal
Abstract
Eco-friendly $(Na,K)NbO_3$ (NKN)-based piezoelectric ceramic materials were fabricated by conventional ceramic method for shear mode piezoelectric energy harvesting application. $NKN-LiTaO_3$ (LT) based compositions were adopted for the high $d_{15}{\times}g_{15}$ which is proportional to harvested energy density. The composition $0.935(Na_{0.535}K_{0.485})NbO_3-0.065LiTaO_3$ was found to be lie on the boundary of tetragonal and orthorhombic phases. With reducing Ta content, the dielectric constant decreased gradually while maintaining high $d_{15}$, which resulted in increased $d_{15}{\times}g_{15}$. The composition $0.935(Na_{0.535}K_{0.485})NbO_3-0.065Li(Nb_{0.990}Ta_{0.010})O_3$ was found to possess excellent piezoelectric and electromechanical properties ($d_{15}{\times}g_{15}=29\;pm^2/N$, $d_{15}$ = 417 pC/N, $k_{15}$ = 0.55), and high curie temperature ($T_c=455^{\circ}C$).
Keywords
Lead-free piezoelectric ceramics; NKN; Piezoelectric energy harvesting; Shear mode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Zhao, B. Ping, Zhang, and J. F. Li, Appl. Phys. Lett., 91, 172901 (2007).   DOI   ScienceOn
2 Z. Y. Shen, K. Wang, and J. F. Li, Appl. Phys., A 97, 911 (2009).   DOI
3 R. Zuo, S. Su, J. Fu, and Z. Xu, J. Mater. Sci: Mater. Electron., 20, 469 (2009).
4 Y. Guo, J. Kakimoto, and H. Ohsato, Mater. Lett., 59, 241 (2005).   DOI   ScienceOn
5 D. W. Wu, R. M. Chen, Q. F. Zhou, K. K. Shung, D. M. Lin, H. L. W. Chan, Ultrasonics, 49, 153 (2009).   DOI
6 Y. Chang, Z. Yang, D. Ma, Z. Liu, and Z. Wang, J. Appl. Phys., 105, 054101 (2009).   DOI
7 J. Hong, J. Yoo, K. Lee, S. Lee, and H. Song, Jpn. J. Appl. Phys., 47, 2192 (2008).   DOI
8 J. Du, J. F. Wang, G. Z. Zang, P. Qi, S. J. Zhang, and T. R. Shrout, Chin. Phys. Lett., 25, 1446 (2008).   DOI
9 B. Q. Ming, J. F. Wang, P. Qi, and G. Z. Zang, J. Appl. Phys., 101, 054103 (2007).   DOI
10 B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, London and NewYork, 1971) p. 140.
11 Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatomi, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004).   DOI   ScienceOn
12 Y. Guo, K. Kakimoto, and H. Osato, Appl. Phys. Lett., 85, 4121 (2004).   DOI   ScienceOn
13 G. Z. Zang, J. F. Wang, H. C. Chen, W. B. Su, C. M. Wang, P. Qi, B. Q. Ming, J. Du, L. M. Zheng, S. Zhang, and T. R. Shrout, Appl. Phys. Lett., 88, 212908 (2006).   DOI
14 H. Y. Park, C. W. Ahn, H. C. Song, J. H. Lee, S. Nahm, K. Uchino, H. G. Lee, and H. J. Lee, Appl. Phys. Lett., 89, 062906 (2006).   DOI   ScienceOn
15 S. Priya, J. Electroceram., 19, 165 (2007).
16 P. Zhao, B. P. Zhang, and J. F. Li, Appl. Phys. Lett., 90, 242909 (2007).   DOI   ScienceOn
17 G. Z. Zang, J. F. Wang, H. C. Chen, W. B. Su, C. M. Wang, P. Qi, B. Q. Ming, J. Du, L. M. Zheng, S. Zhang, and T. R. Shrout, Appl. Phys. Lett., 88, 212908 (2006).   DOI
18 J. Wu, D. Xiao, Y. Wang, J. Zhu, and P. Yu, J. Appl. Phys., 103, 024102 (2008).   DOI
19 P. Zhao, B. Ping, Zhang, and J. F. Li, Scripta Materialia, 58, 429 (2008).   DOI