• Title/Summary/Keyword: High Cooling Rate

Search Result 622, Processing Time 0.03 seconds

Basic Properties of Concrete with Ultrafine-Blaine Air Cooling Slag as Admixture (초미분말 서냉 슬래그를 혼화재로 사용한 콘크리트의 기초적 특성)

  • Heo, Jae-Hyuk;Jeong, Sung-Wook;Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • In this study, a test has been carried out to solve the problem with ground granulated blast-furnace slag, low early strength & lack of supply and to find out a way to use as concrete admixture of the ultrafine blaine air cooling slag which is all disposed as the by product of air cooling slag and its test was conducted to the replacement rate of ultrafine blaine air cooling slag & mixing condition of every concrete admixtures by type for the purpose of obtaining later a basic data for practical use of the cement that used ultrafine blaine air cooling slag by conducting comparative analysis. If ultrafine-blaine air cooling slag is used to the concrete following the results, a high efficiency water reducing agent won't be needed much for flow acquisition due to a high increase in flow, and the stripping time of concrete form will be shortened thanks to the acquisition of early strength, And though, it has the problems with long term strength which is similar or a little lower than the 3 types of ground granulated blast-furnace slag, it's still applicable as the substitute materials for 3 types of ground granulated blast-furnace slag at 10, 15% replacement rate of ultrafine-blaine air cooling slag, at which it shows higher activation index than 3 types of ground granulated blast-furnace slag.

Liquid Cooling System Using Planar ECF Pump for Electronic Devices (평면형 ECF 펌프를 이용한 전자기기 액체냉각 시스템)

  • Seo, Woo-Suk;Ham, Young-Bog;Park, Jung-Ho;Yun, So-Nam;Yang, Soon-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.95-103
    • /
    • 2007
  • This paper presents a liquid cooling concept for heat rejection of high power electronic devices existing in notebook computers etc. The design, fabrication, and performance of the planar ECF pump and farced-liquid cooling system are summarized. The electro-conjugate fluid (ECF) is a kind of dielectric and functional fluids, which generates jet flows (ECF-jets) by applying static electric field through a pair of rod-like electrodes. The ECF-jet directly acts on the working fluid, so the proposed planar ECF pump needs no moving part, produces no vibration and noise. The planar ECF pump, consists of a pump housing and electrode substrate, achieves maximum flow rate and output pressure of $5.5\;cm^3/s$ and 7.2 kPa, respectively, at an applied voltage of 2.0 kV. The farced-liquid cooling system, constructed with the planar ECF pump, liquid-cooled heat sink and thermal test chip, removes input power up to 80 W keeping the chip surface temperature below $70\;^{\circ}C$. The experimental results demonstrate that the feasibility of forced-liquid cooling system using ECF is confirmed as an advanced cooling solution on the next-generation high power electronic devices.

Effect of Cooling Water Temperature on Heat Transfer Characteristics of Water Impinging Jet (냉각수 온도에 따른 수분류 충돌제트의 열전달 특성 연구)

  • Lee, Jungho;Yu, Cheong-Hwan;Do, Kyu Hyung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.249-256
    • /
    • 2010
  • Water jet impingement cooling has been widely used in a various engineering applications; especially in cooling of hot steel plate of steelmaking processes and heat treatment in hot metals as an effective method of removing high heat flux. The effects of cooling water temperature on water jet impingement cooling are primarily investigated for hot steel plate cooling applications in this study. The local heat flux measurements are introduced by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are used to measure the heat flux distribution during water jet impingement cooling. The experiments are performed at fixed flow rate and fixed nozzle-to-target spacing. The results show that effects of cooling water temperature on the characteristics of jet impingement heat transfer are presented for five different water temperatures ranged from 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided with respect to different boiling regimes.

A Development of Counter Flow Type of Cooling System for Effective Panel Cooling (효과적인 패널 냉각을 위한 대향류형 냉각장치의 개발)

  • Lee, Joong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.802-807
    • /
    • 2010
  • The high efficient and cooling system is very important to the control panels of electrical distributors, and Industrial automated system including computer. Also, it can be used widely in various industrial systems such as industrial robots, numerically controlled machining center, and so on. The cooling method which flowing gasses were forced to circulate by compulsion was adapted in this study. then development of counter flow type of cooling system for effective panel cooling. In the present study, fin assembly was developed for this cooling system. As results, the developed system has the improvements of cooling performances and radiant heat ratio. Its increasing of airflow mass is about 20%, and radiation rate of heating is twice or more as high as the conventional system.

Hardness and microstructural changes by cooling rate and holding time during porcelain firing of a multi-purpose dental gold alloy (다목적용 치과용 금합금의 소성 시 냉각속도와 계류시간에 따른 경도와 미세구조의 변화)

  • Cho, Mi-Hyang
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.271-281
    • /
    • 2011
  • Purpose: The aim of this study is to investigate the changes in hardness and microstructure of a dental multipurpose alloy after simulated complete firing with controlled cooling rate and holding time by characterizing the changes in hardness and microstructure after simulated firing with various cooling rates and holding times. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine. The specimens were completely fired in furnace. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: The maximum hardness value was obtained at stage 0 after simulated firing with various cooling rates (quick cooling, stage 0, stage 1, stage 2, stage 3). By the repetitive firing, the hardness of the tested alloy decreased gradually. By holding the specimen at $500^{\circ}C$ for 10-20min after simulated firing, the hardness increased apparently. However, to hold the alloy for long periods of time in the relatively high temperature after simulated firing resulted in the formation of thick oxidation layer. The oxide film formed on the surface of the alloy after simulated complete firing with controlled cooling rate, which was mainly composed of O and Zn. Conclusion: It is reasonable to hold the alloy at $500^{\circ}C$ for 10-20min after complete firing in other to improve the final hardness of the alloy.

Optimization of Evaporator for a Vapor Compression Cooling System for High Heat Flux CPU (고발열 CPU 냉각용 증기 압축식 냉각 시스템의 증발기 최적화)

  • Kim, Seon-Chang;Jeon, Dong-Soon;Kim, Young-Lyoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.255-265
    • /
    • 2008
  • This paper presents the optimization process of evaporator for a vapor compression cooling system for high heat flux CPU. The CPU thermal capacity was given by 300W. Evaporating temperature and mass flow rate were $18^{\circ}C$ and 0.00182kg/s respectively. R134a was used as a working fluid. Channel width(CW) and height(CH) were selected as design factors. And thermal resistance, surface temperature of CPU, degree of superheat, and pressure drop were taken as objective responses. Fractional factorial DOE was used in screening phase and RSM(Response Surface Method) was used in optimization phase. As a result, CW of 2.5mm, CH of 2.5mm, and CL of 484mm were taken as an optimum geometry. Surface temperature of CPU and thermal resistance were $33^{\circ}C\;and\;0.0502^{\circ}C/W$ respectively. Thermal resistance of evaporator designed in this study was significantly lower than that of other cooling systems such as water cooling system and thermosyphon system. It was found that the evaporator considered in this work can be a excellent candidate for a high heat flux CPU cooling system.

Improvement of the Quality of Cryogenic Machining by Stabilization of Liquid Nitrogen Jet Pressure (액체질소 분사 안정화를 통한 극저온가공 품질 향상)

  • Gang, Myeong Gu;Min, Byung-Kwon;Kim, Tae-Gon;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.247-251
    • /
    • 2017
  • Titanium alloy has been widely used in the aerospace industry because of its high strength and good corrosion resistance. During cutting, the low thermal conductivity and high chemical reactivity of titanium generate a high cutting temperature and accelerates tool wear. To improve cutting tool life, cryogenic machining by using a liquid nitrogen (LN2) jet is suggested. In cryogenic jet cooling, evaporation of LN2 in the tank and transfer tube could cause pressure fluctuation and change the cooling rate. In this work, cooling uniformity is investigated in terms of liquid nitrogen jet pressure in cryogenic jet cooling during titanium alloy turning. Fluctuation of jet spraying pressure causes tool temperature to fluctuate. It is possible to suppress the fluctuation of the jet pressure and improve cooling by using a phase separator. Measuring tool temperature shows that consistent LN2 jet pressure improves cryogenic cooling uniformity.

The effet of cooling rate on the residual stresses in the veneer ceramics of zirconia-ceramic restorations: a literature review (냉각속도가 지르코니아-도재 수복물의 전장도재 내 잔류응력에 미치는 효과에 관한 문헌고찰)

  • Chang, Jea-Seung;Kim, Sunjai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.136-142
    • /
    • 2014
  • Nowadays, dental zirconia is widely used as a framework material for a fixed dental prosthesis as well as a single restoration. However, clinical studies have reported high incidence of veneer chipping of zirconia-ceramic restorations compared to that of metal-ceramics. Several factors were raised as the possible causes of veneer ceramic chipping, however, it is still in debate. Recently, residual stresses in the veneer ceramics after cooling process gathers attention as one possible cause of chipping and many studies reported that the rate of cooling significantly influenced the types and the amount of residual stress. The purpose of current review was to briefly describe the effect of cooling rate on the residual stress in zirconia-ceramics. It was also described that the different behavior of residual stress between zirconia-ceramics and metal-ceramics following different cooling rate.

A Study on Crystallization of Thermoplastic Aromatic Polymer (열가소성 방향족 폴리머의 결정화 특성에 대한 연구)

  • Park, Dong-Cheol;Park, Chang-Wook;Shin, Do-Hoon;Kim, Yun-Hae
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2018
  • Thermoplastic composite has been limitedly used in high performance aerospace industry due to relatively low mechanical properties even though it has various advantages. But, thermoplastic aromatic polymer composite has recently been researched and utilized much. In this study, PEEK and PPS neat resin film as representative thermoplastic aromatic polymer were processed through continuous heating, cooling and reheating cycle. Property change such as glass transition temperature and melting temperature were identified and crystallinity variation by different cooling rate were evaluated. In the first (heating) run, polymer specimens were kept for 5 minutes at higher temperature than melting point to remove previous thermal history, and crystallization reaction was controlled by adjusting cooling rate to 2, 5, 10, 20 and $40^{\circ}C/minute$ in the second (cooling) run. In the third (heating) run, specimen crystallinity were verified by measuring the melting enthalpy. The initial specimens containing high portion of amorphous structure exhibited cold crystallization and clear glass transition in the first run whereas they did not show in the third run due to the increase of crystalline structure portion. As cooling rate decreases through the second cooling run, the crystallinity of the specimen increased. PEEK polymer had 21.9~39.3% crystallinity depending on cooling rate change whereas PPS polymer showed 29.1~31.2%.

Comparison of performance of cooling tower with various shape of packings (충전재 형상에 따른 냉각탑 성능비교에 관한 연구)

  • 이강현;최우영;이재헌;소헌영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.358-367
    • /
    • 1998
  • Since the performance of cooling tower is strongly dependent on the thermal performance of the packing, the evaluations of heat transfer rate and fan power from various packing have attracted intense interest. In the present study, two new packings have been devised and their performances have been compared with those of two existing packings to find better shape characteristic. It is found that one of the existing packings, which showed high heat transfer rate and medium fan power due to zig -zag flow passages and highly irregular surfaces, should be adapted.

  • PDF