• 제목/요약/키워드: High Aspect Ratio Wing

검색결과 39건 처리시간 0.026초

날개의 종횡비가 날개 짓 운동의 공기역학적 특성에 미치는 영향 (The Effect of Aspect Ratio on Aerodynamic Characteristics of Flapping Motion)

  • 오현택;최항철;김광호;정진택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.217-220
    • /
    • 2006
  • The lift and drag forces produced by a wing of a given cross-sectional profile are dependent on the wing planform and the angle of attack. Aspect ratio is the ratio of the wing span to the average chord. For conventional fixed wing aircrafts, high aspect ratio wings produce a higher lift to drag ratio than low ones for flight at subsonic speeds. Therefore, high aspect ratio wings are used on aircraft intended for long endurance. However, birds and insects flap their wings to fly in the air and they can change their wing motions. Their wing motions are made up of translation and rotation. Therefore, we tested flapping motions with parameters which affect rotational motion such as the angle of attack and the wing beat frequency. The half elliptic shaped wings were designed with the variation of aspect ratio from 4 to 11. The flapping device was operated in the water to reduce the wing beat frequency according to Reynolds similarity. In this study, the aerodynamic forces, the time-averaged force coefficients and the lift to drag ratio were measured at Reynolds number 15,000 to explore the aerodynamic characteristics with the variation of aspect ratio. The maximum lift coefficient was turned up at AR=8. The mean drag coefficients were almost same values at angle of attack from $10^{\circ}$ to $40^{\circ}$ regardless of aspect ratio, and the mean drag coefficients above angle of attack $50^{\circ}$ were decreased according to the increase of aspect ratio. For flapping motion the maximum mean lift to drag ratio appeared at AR=8.

  • PDF

Experimental and Improved Numerical Studies on Aerodynamic Characteristics of Low Aspect Ratio Wings for a Wing-In Ground Effect Ship

  • Ahn, Byoung-Kwon;Kim, Hyung-Tae;Lee, Chang-Sup;Lew, Jae-Moon
    • Journal of Ship and Ocean Technology
    • /
    • 제12권3호
    • /
    • pp.14-25
    • /
    • 2008
  • Recently, there has been a serious effort to design a wing in ground effect (WIG) craft. Vehicles of this type might use low aspect ratio wings defined as those with smaller than 3. Design and prediction techniques for fixed wings of relatively large aspect ratio are reasonably well developed. However, Aerodynamic problems related to vortex lift on wings of low aspect ratio have made it difficult to use existing techniques. In this work, we firstly focus on understanding aerodynamic characteristics of low aspect ratio wings and comparing the results from experimental measurements and currently available numerical predictions for both inviscid and viscous flows. Second, we apply an improved numerical method, "B-spline based high panel method with wake roll-up modeling", to the same problem.

FENSAP-ICE를 이용한 고세장비 날개 결빙해석 (THE ICE ANALYSIS OF HIGH ASPECT RATIO WING USING FENSAP-ICE)

  • 정경진;이재훈;강인모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.456-459
    • /
    • 2010
  • Icing is one of the most serious hazards for aircraft. The amount and rate of icing depend on a number of meteorogical and aerodynamic factors. Of primary importance are amount of liquid water content of droplets, their size, the temperature of aircraft surfaces, the collection efficiency, and the extent of supercooled droplets. In this study, in-flight icing analysis of low reynolds number high aspect ratio wing is carried out by using FENSAP-ICE. Each liquid water contents with altitude is obtained from FAR 25 Appendix-C. And the collectoin efficiency is calculated to check out the ice accretion position of wing with two angles of attack. The degradation of aerodynamic characteristics of aircraft are figured out by investigating the accretion of rime and glaze ice.

  • PDF

EDISON OPT 평면요소를 이용한 고 세장비 날개에 대한 선형, 비선형 비교연구 및 추가구조물 위치 최적화 (Study on High Aspect Ratio Wing and Optimization of Substructure Location by Using EDISON OPtimal Triangle membrane(Linear and Non-linear analysis) - Static)

  • 이다운;홍윤표;신상준
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.262-267
    • /
    • 2016
  • In this paper, to design Human Powered Aircraft(HPAC) with high aspect ratio wing which behave with large displacement under lift distribution causing a failure itself, then steel wire has been designed to prevent its failure. unit load method is used to calculate reaction force on wire and Optimal Triangle(OPT) membrane is employed to analyze its main wing spar with large displacement. EDISON CSD solver, linear static analysis and co-rotational nonlinear static anaysis both using OPT membrane produce behaviors of beam for each case of wire location about main wing spar, and aerodynamic coefficient also, by using aerodynamic analysis tool.

  • PDF

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

고 세장비 일체형 복합재 날개 제작 연구 (A Study on Manufacture of Integrated Composite Wing with High Aspect Ratio)

  • 주영식;전우철;변관화;조창민;한진욱
    • 한국항공우주학회지
    • /
    • 제41권2호
    • /
    • pp.127-133
    • /
    • 2013
  • 본 논문에서는 일체형 복합재 날개 제작에 대한 연구를 수행하였다. 날개는 피벗구조 형태 및 양항비가 큰 고 세장비 구조를 가지고 있다. 날개는 가벼워야할 뿐만 아니라 구조성능 요구조건을 만족하는 충분한 강도 및 강성이 요구되므로 탄소섬유 복합재를 적용하여 설계하였다. 제작비용을 줄이기 위해 구성 부품을 일체형으로 설계하여 구조 부품수를 감소시키고, 오토클레이브를 사용하여 날개를 일체성형으로 제작하였다. 제작공정별 시편시험을 수행하여 재료물성을 확인하였으며, 부분품시험을 통하여 일체성형에 따른 구조성능을 검증하였다.

키트용 접이식 복합재 날개 개발 (A Development of Pivoting Composite Wing for Mounting Kit)

  • 주영식;전우철;변관화;조창민
    • 한국군사과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.486-492
    • /
    • 2013
  • The pivoting composite wing is developed for the kit to be mounted on the external stores. The wing has a pivoting structure for the installation to an aircraft and high aspect ratio to increase lift drag ratio. The wing needs to be light and have sufficient strength and stiffness to satisfy structural design requirements. The wing is designed with carbon fiber composite and the structural parts are integrated to reduce cost to manufacture. In order to verify the structural performances, the design load analysis and flight load survey, the static analysis and test, the ground vibration test and flutter analysis are performed. It is shown that the wing has sufficient structural strength and stiffness to satisfy the structural design requirements.

Wing Design Optimization for a Long-Endurance UAV using FSI Analysis and the Kriging Method

  • Son, Seok-Ho;Choi, Byung-Lyul;Jin, Won-Jin;Lee, Yung-Gyo;Kim, Cheol-Wan;Choi, Dong-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.423-431
    • /
    • 2016
  • In this study, wing design optimization for long-endurance unmanned aerial vehicles (UAVs) is investigated. The fluid-structure integration (FSI) analysis is carried out to simulate the aeroelastic characteristics of a high-aspect ratio wing for a long-endurance UAV. High-fidelity computational codes, FLUENT and DIAMOND/IPSAP, are employed for the loose coupling FSI optimization. In addition, this optimization procedure is improved by adopting the design of experiment (DOE) and Kriging model. A design optimization tool, PIAnO, integrates with an in-house codes, CAE simulation and an optimization process for generating the wing geometry/computational mesh, transferring information, and finding the optimum solution. The goal of this optimization is to find the best high-aspect ratio wing shape that generates minimum drag at a cruise condition of $C_L=1.0$. The result shows that the optimal wing shape produced 5.95 % less drag compared to the initial wing shape.

유체-구조 연계 해석기법을 이용한 세장비가 큰 비행체 날개의 공탄성 해석 (Fluid-Structure Interaction Analysis of High Aspect Ratio Wing for the Prediction of Aero-elasticity)

  • 이기두;이영신;이대열;이인원
    • 한국항공우주학회지
    • /
    • 제38권6호
    • /
    • pp.547-556
    • /
    • 2010
  • 항공기의 안전성 확보 및 투하되는 탄의 정확도 증대를 위한 새로운 개념의 활공비행체 개발이 많은 기업에서 진행 중에 있다. 항공기의 장착 공간 및 활공거리 증대를 고려하여 세장비가 큰 전개되는 날개를 채택하는 것이 일반적이다. 큰 세장비의 날개 구조물은 상대적으로 낮은 강성에 의하여 과도한 탄성변형 뿐 아니라 플러터 발생의 가능성이 높아지게 된다. 본 연구는 큰 세장비 날개에 대하여 유체-공력 연계기법을 이용, 구조변형에 의한 공력특성의 변화 및 플러터 발생가능성에 대하여 검토하였다. 공기력 계산을 위하여 FLUENT 코드가 구조 동특성 해석을 위하여 ABAQUS 상용코드가 사용되었으며, 국부지지 방사기저함수로 구성된 Code-bridge를 이용한 입력 자료의 보간 및 사상을 수행하였다. 해석 결과 고려된 활공 조건에서 구조 변형에 의한 공력 특성의 변화가 발생하는 것이 관측되었으며, 이에 의한 진동도 계속적으로 발생되는 것으로 표현되었다.

채널 내를 비행하는 가변스팬 날개 공력특성 I (가로세로비 및 안내로 영향) (Aerodynamic Characteristics of a Variable Span Wing Flying Inside a Channel I (Effects of Wing Aspect Ratio and Guideway))

  • 한철희
    • 항공우주시스템공학회지
    • /
    • 제10권4호
    • /
    • pp.11-16
    • /
    • 2016
  • 본 논문에서 채널 안내로를 비행하는 가변스팬 날개의 공력특성에 관한 실험연구를 수행하였다. NACA 0012익형을 가진 가변스팬 날개를 제작하였으며 선형서보모터를 사용하여 작동시켰다. 날개의 가로세로비, 지면효과, 날개와 펜스사이의 거리가 날개의 공력특성에 미치는 영향을 조사하였다. 연구결과 지면 및 펜스 모두 항공기 날개의 양력을 증가시켰으며 지면효과와 달리 펜스는 날개의 항력에 큰 영향을 미치지 않았다. 가변스팬 메커니즘이 플랩사용이 제한되는 상황에서 효과적인 고양력 장치로 사용가능할 것으로 판단된다.