DOI QR코드

DOI QR Code

Fluid-Structure Interaction Analysis of High Aspect Ratio Wing for the Prediction of Aero-elasticity

유체-구조 연계 해석기법을 이용한 세장비가 큰 비행체 날개의 공탄성 해석

  • Received : 2009.12.30
  • Accepted : 2010.05.04
  • Published : 2010.06.01

Abstract

For the safety of aircraft and accuracy of bombs, many companies have researched the new concept of adaptive kit to flying-bombs. For the long distance flying, it's normally used deployed high-aspect ratio wing because of limited volume. The probabilities of large elastic deformation and flutter are increased due to decreased stiffness of high-aspect ratio wing. In this paper, computational fluid dynamics and computational structure dynamics interaction methodology are applied for prediction of aerodynamic characteristics. FLUENT and ABAQUS are used to calculate fluid and structural dynamics. Code-bridge was made base on the compactly supported radial basis function to execute interpolation and mapping. There are some differences between rigid body and fluid-structure interaction analysis which are results of aerodynamics characteristics due to structural deformation. Small successive vibration was observed by interaction.

항공기의 안전성 확보 및 투하되는 탄의 정확도 증대를 위한 새로운 개념의 활공비행체 개발이 많은 기업에서 진행 중에 있다. 항공기의 장착 공간 및 활공거리 증대를 고려하여 세장비가 큰 전개되는 날개를 채택하는 것이 일반적이다. 큰 세장비의 날개 구조물은 상대적으로 낮은 강성에 의하여 과도한 탄성변형 뿐 아니라 플러터 발생의 가능성이 높아지게 된다. 본 연구는 큰 세장비 날개에 대하여 유체-공력 연계기법을 이용, 구조변형에 의한 공력특성의 변화 및 플러터 발생가능성에 대하여 검토하였다. 공기력 계산을 위하여 FLUENT 코드가 구조 동특성 해석을 위하여 ABAQUS 상용코드가 사용되었으며, 국부지지 방사기저함수로 구성된 Code-bridge를 이용한 입력 자료의 보간 및 사상을 수행하였다. 해석 결과 고려된 활공 조건에서 구조 변형에 의한 공력 특성의 변화가 발생하는 것이 관측되었으며, 이에 의한 진동도 계속적으로 발생되는 것으로 표현되었다.

Keywords

References

  1. M. Gluck, M. Breuer, F. Durst, A. Halfmann, and E. Rank, "Computation of fluid-structure interaction on lightweight structures", J. of Wind Engineering and Industrial Aerodynamics, vol. 89, pp. 1351-1368, 2001. https://doi.org/10.1016/S0167-6105(01)00150-7
  2. R. Kamakoti, W. Shyy, "Fluid-Structure Interaction for Aeroelastic Application", Progrss in Aerospace Sciences, Vol. 40, pp. 535-558, 2004. https://doi.org/10.1016/j.paerosci.2005.01.001
  3. J. M. Hasik, "GPS at War: A Ten-year Retrospective", Proceedings of the ION GPS, Salt Lake City, Utah, pp. 2406-2417, 2001.
  4. C. D. Soo, K. S. Gook, K. B. Kon, P. S. Hyun, C. M. Hyo, L. D. Ho, L. K. Tae, J. S. Moon, "Static Aeroelastic Analysis for Aircraft Wings using CFD/CST Coupling Methodology", KSAS International Journal., Vol. 35, No. 4, pp. 287-294, 2007. https://doi.org/10.5139/JKSAS.2007.35.4.287
  5. M. H. L. Hounjet, J. J. Meijer, "Evaluation of Elastomechnical and Aerodynamic data Transfer Methods for Nonplanar Configurations in Computational Aeroelastic Analysis", National Aerospace Laboratory NLR, NLR-TP-95690U, 1995.
  6. M. J. Smith, D. H. Hodges, "Evaluation of Computational Algorithms Suitable for Fluid-Structure Interaction", Journal of Aircraft, Vol. 37, No. 2, pp. 282-294, 2000. https://doi.org/10.2514/2.2592
  7. 이기두, 박광수, 박영근, 주영식, 강인모, 정상준, 신동호, 윤형식, "일반폭탄용 비행보조체", 국내특허, 특허 제10-0618438호, 2006.
  8. FLUENT 6.3 User's Guide, Fluent Inc, http://www.fluentusers.com/fluent/doc/doc_f.htm
  9. ABAQUS 6.6 Analysis User's Manual, http ://www.abaqus.com/
  10. K. D. Lee, Y. S. Lee, D. Y. Lee and D. S. Kim, "A Study on the Effective Interpolation Methods to the Fluid-Structure Interaction Analysis for Large-Scale Structure", J. of The Korean Society for Aeronautical and Space Sciences, Vol. 37, No. 5, pp. 433-441, 2009. https://doi.org/10.5139/JKSAS.2009.37.5.433
  11. H. Wendland, "Piecewise Polynomial, Positive Definite and Compactly Supported Radial Basis Functions of Minimal Degree", Advances in Computational Mathematics, Vol. 4, 389-396, 1995. https://doi.org/10.1007/BF02123482
  12. GAMBIT 2.4 User's Guide, http://www.fluentusers.com/gambit/doc/doc_f.htm
  13. R. J. Allenmang, "The Modal Assurance Criterion-Twenty Years of Use and Abuse", Sound and Vibration, Vol. 37, No. 8, pp. 14-23, 2003.
  14. K. D. Lee, Y. S. Lee, D. S. Kim and D. Y. Lee, "A Study on Updating of Analytic Model of Dynamics for Aircraft Structures Using Optimization Technique", J. of The Korean Society for Aeronautical and Space Sciences, Vol. 37, No. 2, pp. 131-138, 2009. https://doi.org/10.5139/JKSAS.2009.37.2.131
  15. E. C. Yates, "AGARD Standard Aeroelastic Configurations for Dynamic Response Candidate Configuration I.-Wing 445.6", NASA TM 100492, 1987.
  16. R. J. Beaubien, F. Nitzsche, and D. Feszty, "Time and frequency domain solutions for the AGARD 445 wing", Paper IF-102, IFASD (International Forum on Aeroelasticity and Structural Dynamics), 2005.
  17. P. H. Cook, M. A. McDonald, and M. C. P. Firmin, "AEROFOIL RAE 2822 Pressure Distribution and Boundary Layer and Wake Measurements", AGARD Advisory Report No. 138, 1979.

Cited by

  1. The Prediction of Aeroelasticity of F-5 Aircraft's Horizontal Tail with Various Shape of External Stores vol.39, pp.9, 2011, https://doi.org/10.5139/JKSAS.2011.39.9.823