• Title/Summary/Keyword: High Aspect Ratio

Search Result 957, Processing Time 0.03 seconds

Impact of salt stress on the α-tocopherol, carotenoid derivatives and flocculation efficiency of Euglena sp., Indonesian Strain

  • Ria Amelia;Arief Budiman;Andhika Puspito Nugroho;Eko Agus Suyono
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.379-391
    • /
    • 2024
  • Tocopherol, carotenoids, and chlorophyll are the primary components of the antioxidative response in microalgae. Conditions of stress, such salt stress, can trigger the processes responsible for the accumulation of tocopherol and carotene. It has been found that the most difficult part of culturing microalgae is keeping it affordable. This study investigated the effects of different salt types and concentrations on the amount of α-tocopherol, carotenoid derivatives, and flocculation efficiency of Euglena sp. Cultures of Euglena sp. was developed under salt stress conditions of NaCl 200 mM and KCl 200 mM. UV-VIS spectrophotometry was used to confirm the presence of α-tocopherol and carotenoid derivatives under thirteen days of salt stress testing. Increasing salinity has a significant effect on Euglena sp., causing spherical cell morphologies with aspect ratio 1.385 ± 0.031 for NaCl 200 mM and 1.414 ± 0.040 for KCl 200 mM. Increasing salinity also slowing down development with specific growth rate value of 0.171 ± 0.006 per day and 0.122 ± 0.029 per day for NaCl and KCl 200 mM, respectively. Nevertheless, the amount of α-tocopherol in Euglena sp. increases with a high salt concentration; algal cells flocculated more successfully when increasing the salt concentrations (NaCl 200 mM and KCl 200 mM) was added. Due to the inhibition of photosynthetic activity in salt-stressed cells, the control group exhibited higher levels of carotenoid derivatives (ranging from 0.5-1 ㎍/mL) and pheophytin a and b (0.0062 ± 0.001 ㎍/mL and 0.0064 ± 0.001 ㎍/mL) than the group treated with salt stress. In conclusion, salt stress was an effective way to raises the concentration of α-tocopherol and significantly reduce the expense of harvesting Euglena sp.

MULTISTEP HEAT-TREATMENT EFFECTS ON ELECTROSPUN Nd-Fe-B-O NANOFIBERS

  • EUN JU JEON;NU SI A. EOM;JIMIN LEE;BIN LEE;HYE MI CHO;JI SUN ON;YONG-HO CHOA ;BUM SUNG KIM
    • Archives of Metallurgy and Materials
    • /
    • v.63 no.3
    • /
    • pp.1433-1437
    • /
    • 2018
  • Neodymium-Iron-Boron (Nd-Fe-B) magnets are considered to have the highest energy density, and their applications include electric motors, generators, hard disc drives, and MRI. It is well known that a fiber structure with a high aspect ratio and the large specific surface area has the potential to overcome the limitations, such as inhomogeneous structures and the difficulty in alignment of easy axis, associated with such magnets obtained by conventional methods. In this work, a suitable heat-treatment procedure based on single-step and multistep treatments to synthesize sound electrospun Nd-Fe-B-O nanofibers of Φ572 nm was investigated. The single-step heat-treated (directly heat-treated at 800℃ for 2 h in air) samples disintegrated along with the residual organic compounds, whereas the multistep heat-treated (sequential three-step heat-treated including three steps;: dehydration (250℃ for 30 min in an inert atmosphere), debinding (650℃ for 30 min in air), and calcination (800℃ for 1 h in air)) fibers maintained sound fibrous morphology without any organic impurities. They could maintain such fibrous morphologies during the dehydration and debinding steps because of the relatively low internal pressures of water vapor and polymer, respectively. In addition, the NdFeO3 alloying phase was dominant in the multistep heat-treated fibers due to the removal of barriers to mass transfer in the interparticles.

Characteristic of Ru Thin Film Deposited by ALD

  • Park, Jingyu;Jeon, Heeyoung;Kim, Hyunjung;Kim, Jinho;Jeon, Hyeongtag
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.78-78
    • /
    • 2013
  • Recently, many platinoid metals like platinum and ruthenium have been used as an electrode of microelectronic devices because of their low resistivity and high work-function. However the material cost of Ru is very expensive and it usually takes long initial nucleation time on SiO2 during chemical deposition. Therefore many researchers have focused on how to enhance the initial growth rate on SiO2 surface. There are two methods to deposit Ru film with atomic layer deposition (ALD); the one is thermal ALD using dilute oxygen gas as a reactant, and the other is plasma enhanced ALD (PEALD) using NH3 plasma as a reactant. Generally, the film roughness of Ru film deposited by PEALD is smoother than that deposited by thermal ALD. However, the plasma is not favorable in the application of high aspect ratio structure. In this study, we used a bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2] as a metal organic precursor for both thermal and plasma enhanced ALDs. In order to reduce initial nucleation time, we use several methods such as Ar plasma pre-treatment for PEALD and usage of sacrificial RuO2 under layer for thermal ALD. In case of PEALD, some of surface hydroxyls were removed from SiO2 substrate during the Ar plasma treatment. And relatively high surface nitrogen concentration after first NH3 plasma exposure step in ALD process was observed with in-situ Auger electron spectroscopy (AES). This means that surface amine filled the hydroxyl removed sites by the NH3 plasma. Surface amine played a role as a reduction site but not a nucleation site. Therefore, the precursor reduction was enhanced but the adhesion property was degraded. In case of thermal ALD, a Ru film was deposited from Ru precursors on the surface of RuO2 and the RuO2 film was reduced from RuO2/SiO2 interface to Ru during the deposition. The reduction process was controlled by oxygen partial pressure in ambient. Under high oxygen partial pressure, RuO2 was deposited on RuO2/SiO2, and under medium oxygen partial pressure, RuO2 was partially reduced and oxygen concentration in RuO2 film was decreased. Under low oxygen partial pressure, finally RuO2 was disappeared and about 3% of oxygen was remained. Usually rough surface was observed with longer initial nucleation time. However, the Ru deposited with reduction of RuO2 exhibits smooth surface and was deposited quickly because the sacrificial RuO2 has no initial nucleation time on SiO2 and played a role as a buffer layer between Ru and SiO2.

  • PDF

An Experimental Study on the Mechanical Properties and Long-Term Deformations of High-Strength Steel Fiber Reinforced Concrete (고강도 강섬유보강 콘크리트의 역학적 특성 및 장기변형 특성에 관한 실험적 연구)

  • Yoon, Eui-Sik;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.401-409
    • /
    • 2006
  • This study presents basic information on the mechanical properties and long-term deformations of high-strength steel fiber reinforced concrete(HSFRC). The Influence of steel fiber on modulus of elasticity, compressive, splitting tensile and flexural strength, and drying shrinkage and creep of HSFRC are investigated, and flexural fracture toughness is evaluated. Test results show that Test results show that the effect of steel fibers on the compressive strength is negligible, and the modulus of elasticity of HSFRC increased with the increase of fiber volume fraction. And the effect of fiber volume fraction($V_f$) and aspect ratio($l_f/d_f$) on tensile strength, flexural strength and toughness is extremely prominent. It is observed that the flexural deflection corresponded to ultimate load increased with the increase of $V_f$ and $l_f/d_f$, and due to fiber arresting cracking, the shape of the descending branch of load-deflection tends towards gently. Also, the effect of addition of various amounts of fiber on the creep and shrinkage is obvious. Especially, the effect of adding fibers to high-strength concrete is more pronounced in reducing the drying shrinkage than the creep.

Operating Status and Improvement Plans of Ten Wetlands Constructed in Dam Reservoirs in Korea (국내 10개 댐저수지 인공습지의 운영현황 및 개선방안)

  • Choi, Kwangsoon;Kim, Sea Won;Kim, Dong Sup;Lee, Yosang
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.431-440
    • /
    • 2014
  • To propose the improvement and management plans to strengthen the pollutant removal efficiency of dam reservoir's constructed wetlands(CWs), the operation status and configuration of CWs (including water depth, operational flow, water flow distribution, residence time, and pollutant removal efficiency, aspect ratio, open water/vegetation ratio etc.) were analyzed in 10 major wetlands constructed in dam reservoirs. The pollutant concentrations in the inflows of the studied CWs were lower than those of American and European constructed wetlands. Especially, organic matter concentrations in all of inflows were below 3 mg/L(as BOD) due to advanced treatment of sewage disposal plant and an intake of low concentration water during dry and normal seasons. The average removal efficiency of total nitrogen(TN) and total phosphorus(TP) for 10 CWs ranged from 7.6~67.6%(mean 24.9%) and -4.9~74.5%(mean 23.7%), respectively, showing high in wetlands treating municipal wastewater. On the other hand, the removal efficiency of BOD was generally low or negative with ranging from -133.3 to 41.7%. From the analysis of the operation status and configuration of CWs, it is suggested that the low removal efficiency of dam reservoir's CWs were caused by both structural (inappropriate aspect ratio, excessive open water area) and operational (neglecting water-level management, lack of facilities and operation for first flush treatment, lake of monitoring during rainy events) problems. Therefore, to enable to play a role as a reduction facility of non-point source(NPS) pollutants, an appropriate design and operation manuals for dam reservoir's CW is urgently needed. In addition, the monitoring during rainy events, when NPS runoff occur, must be included in operation manual of CW, and then the data obtained from the monitoring is considered in estimation of the pollutant removal efficiency by dam reservoir's CW.

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

Comparison of Collimator Choice on Image Quality of I-131 in SPECT/CT (I-131 SPECT/CT 검사의 에서 조준기 종류에 따른 영상 비교 평가)

  • Kim, Jung Yul;Kim, Joo Yeon;Nam-Koong, Hyuk;Kang, Chun Goo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • Purpose: I-131 scan using High Energy (HE) collimator is generally used. While, Medium Energy (ME) collimator is not suggested to use in result of an excessive septal penetration effects, it is used to improve the sensitivities of count rate on lower dose of I-131. This research aims to evaluate I-131 SPECT/CT image quality using by HE and ME collimator and also find out the possibility of ME collimator clinical application. Materials and Methods: ME and HE collimator are substituted as Siemens symbia T16 SPECT/CT, using I-131 point source and NEMA NU-2 IQ phantom. Single Energy Window (SEW) and Triple Energy Windows (TEW) are applied for image acquisition and images with CTAC and Scatter correction application or not, applied different number of iteration and sub set are reconstructed by IR method, flash 3D. By analysis of acquired image, the comparison on sensitivities, contrast, noise and aspect ratio of two collimators are able to be evaluated. Results: ME Collimator is ahead of HE collimator in terms of sensitivity (ME collimator: 188.18 cps/MBq, HE collimator: 46.31 cps/MBq). For contrast, reconstruction image used by HE collimator with TEW, 16 subset 8 iteration applied CTAC is shown the highest contrast (TCQI=190.64). In same condition, ME collimator has lower contrast than HE collimator (TCQI=66.05). The lowest aspect ratio for ME collimator and HE collimator are 1.065 with SEW, CTAC (+) and 1.024 with TEW, CTAC (+) respectively. Conclusion: Selecting a proper collimator is important factor for image quality. This research finding tells that HE collimator, which is generally used for I-131 scan emitted high energy ${\gamma}$-ray is the most recommendable collimator for image quality. However, ME collimator is also applicable in condition of lower dose, lower sensitive if utilizing energy window, matrix size, IR parameter, CTAC and scatter correction appropriately.

  • PDF

Graphene Oxide/Polyimide Nanocomposites for Gas Barrier Applications (산화그래핀이 함유된 폴리이미드 나노복합막의 기체차단성 평가 및 활용)

  • Yoo, Byung Min;Lee, Min Yong;Park, Ho Bum
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.154-166
    • /
    • 2017
  • Polymeric films for gas barrier applications such as food packaging and electronic devices have attracted great interest due to their cheap, light and easy processability among gas barrier materials. Especially in electronic devices, extremely low gas permeance is necessary for maintaining the device performance. However, current polymeric barrier films still suffer from relatively high gas permeance than other materials. Therefore, there have been strong needs to enhance the gas barrier performance of polymeric barrier films while keep their own advantages. Recently, graphene is highlighted as a 2D-layered material for gas barrier applications. However, owing to the poor workability and difficulty to produce in engineering scale, graphene oxide (GO) is on the rise. GO consists of oxygen-containing functional groups on surface with intrinsic 2D-layered structure and high aspect ratio, and it can be well-dispersed in aqueous polar solvents like water, resulting in scalable mass production. Here, we prepared GO incorporated polyimide (PI) nanocomposites. PI is widely used barrier polymer with high mechanical strength and thermal and chemical stability. We demonstrated that PI/GO nanocomposites could perform as a gas barrier. Furthermore, surfactants (Triton X-100 (TX) and Sodium deoxycholate (SDC)) are introduced to enhance the gas barrier performance by improving the degree of dispersion of GO in PI matrix. As a result, TX enhanced the gas barrier performance of PI/GO nanocomposites which is similar to predicted value. This finding will provide new insight to polymer nanocomposites for gas barrier applications.

Wind Tunnel Test Study on the Characteristics of Wind-Induced Responses of Tall Buildings with Openings (중공부(中空部)를 가진 고층건축물(高層建築物)의 풍응답(風應答) 특성(特性)에 관한 풍동실험(風洞實驗) 연구(硏究))

  • Kim, Dong Woo;Kil, Yong Sik;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.499-509
    • /
    • 2005
  • The excessive wind-induced motion of tall buildings most frequently result from vortex-shedding-induced across-wind oscillations. This form of excitation is most pronounced for relatively flexible, lightweight, and lightly damped high-rise buildings with constant cross-sections. This paper discusses the aerodynamic means ofmitigating the across-wind vortex shedding induced in such situations. Openings are added in both the drag and lift directions in the buildings to provide pressure equalization. Theytend to reduce the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. The effects of buildings with several geometries of openings on aerodynamic excitations and displacement responses have been studied for high-rise buildings with square cross-sections and an aspect ratio of 8:1 in a wind tunnel. High-frequency force balance testshave been carried out at the Kumoh National University of Technology using rigid models with 24 kinds of opening shapes. The measured model's aerodynamic excitations and displacement were compared withthose of a square cylinder with no openings to estimate the effectiveness of openings for wind-induced oscillations. From these results, theopening shape, size, and location of buildings to reduce wind-induced vortex shedding and responses were pointed out.

An Empirical Study on the Effects of Fertility Rate and Female Labor Supply on Economic Potential (출산율 및 여성고용 제고 정책이 성장잠재력에 미치는 영향)

  • Ryu, Deock-Hyun
    • Korea journal of population studies
    • /
    • v.31 no.1
    • /
    • pp.27-54
    • /
    • 2008
  • The purpose of this study is to analyze the effect of policy boosting fertility and labor participation rate on potential GDP growth rate. To do this, we employ a growth accounting approach, which decomposes per capita GDP into two parts. The first one is the change of dependency ratio and the other is the change of labor input. The labor input is again decomposed into the qualitative and quantitative parts. The quantitative part considers the change of labor participation rate and working time. The qualitative aspects is based on the trend of productivity of labor. From the scenarios of NSO(National Statistics Office), the effect of the fertility-raising policy on per capita potential GDP growth rate is calculated and projected to the year of 2050. We also forecast the policy effect inducing high labor participating rate of female labor and beyond 55-year old labor. The baseline results show that the per capita GDP growth rate will show mid 4% to the year of 2010, gradually declining to 3.94% by 2020, 3.03% by 2030, 2.41% by 2040. The high fertility rate scenario will not have effects on the potential growth by 2030, but show 0.10%p higher per capita GDP growth rate than that of baseline scenario result. By the high female labor participation policy, the per capita GDP growth rate will reach 0.04%p higher per capita GDP growth rate than that of baseline scenario. Based on the results of this paper, we conclude that the quantitative labor input cannot solely account for the trend decline of potential GDP, and the qualitative aspect, like labor productivity, is much more important element to sustain and boots the economic growth.