• Title/Summary/Keyword: High Aspect Ratio

Search Result 957, Processing Time 0.033 seconds

Physical Properties and Morphology of Carbon Nanotubes Prepared by Thermal and Plasma CVD of Acetylene (아세틸렌의 열 및 플라즈마 CVD법으로 제조한 탄소나노튜브의 물성과 구조적 특성)

  • Kim, Myung-Chan;Moon, Seung-Hwan;Lim, Jae-Seok;Hahm, Hyun-Sik;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.174-181
    • /
    • 2004
  • Multi-walled carbon nanotubes (CNTs) were prepared by thermal chemical vapor deposition (CVD) and microwave plasma chemical vapor deposition (MPCVD) using various combination of binary catalysts with four transition metals such as Fe, Co, Cu, and Ni. In the preparation of CNTs from acetylene precursor by thermal CVD, the CNTs with very high yield of 43.6 % was produced over $Fe-Co/Al_2O_3$. The highest yield of CNTs was obtained with the catalyst reduced for 3 hr and the yield was decreased with increasing reduction time to 5 hr, due to the formation of $FeAl_2O_4$ metal-aluminate. On the other hand, the CNTs prepared by acethylene plasma CVD had more straight, smaller diameter, and larger aspect ratio(L/D) than those prepared by thermal CVD, although their yield had lower value of 27.7%. The degree of graphitization of CNTs measured by $I_d/I_g$ value and thermal degradation temperature were 1.04 and $602^{\circ}C$, respectively.

Photolithographic Fabrication of Poly(Ethylene Glycol) Microstructures for Hydrogel-based Microreactors and Spatially Addressed Microarrays

  • Baek, Taek-Jin;Kim, Nam-Hyun;Choo, Jae-Bum;Lee, Eun-Kyu;Seong, Gi-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1826-1832
    • /
    • 2007
  • We describe the fabrication of poly(ethylene glycol) diacrylate (PEG-DA) hydrogel microstructures with a high aspect ratio and the use of hydrogel microstructures containing the enzyme ${\beta}$-galactosidase (${\beta}$-Gal) or glucose oxidase (GOx)/horseradish peroxidase (HRP) as biosensing components for the simultaneous detection of multiple analytes. The diameters of the hydrogel microstructures were almost the same at the top and at the bottom, indicating that no differential curing occurred through the thickness of the hydrogel microstructure. Using the hydrogel microstructures as microreactors, ${\beta}$-Gal or GOx/HRP was trapped in the hydrogel array, and the time-dependent fluorescence intensities of the hydrogel array were investigated to determine the dynamic uptake of substrates into the PEG-DA hydrogel. The time required to reach steady-state fluorescence by glucose diffusing into the hydrogel and its enzymatic reactions with GOx and HRP was half the time required for resorufin ${\beta}$-D-galactopyranoside (RGB) when used as the substrate for ${\beta}$-Gal. Spatially addressed hydrogel microarrays containing different enzymes were micropatterned for the simultaneous detection of multiple analytes, and glucose and RGB solutions were incubated as substrates. These results indicate that there was no cross-talk between the ${\beta}$-Gal-immobilizing hydrogel micropatches and the GOx/HRP-immobilizing micropatches.

Atomic Layer Deposition: Overview and Applications (원자층증착 기술: 개요 및 응용분야)

  • Shin, Seokyoon;Ham, Giyul;Jeon, Heeyoung;Park, Jingyu;Jang, Woochool;Jeon, Hyeongtag
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.405-422
    • /
    • 2013
  • Atomic layer deposition(ALD) is a promising deposition method and has been studied and used in many different areas, such as displays, semiconductors, batteries, and solar cells. This method, which is based on a self-limiting growth mechanism, facilitates precise control of film thickness at an atomic level and enables deposition on large and three dimensionally complex surfaces. For instance, ALD technology is very useful for 3D and high aspect ratio structures such as dynamic random access memory(DRAM) and other non-volatile memories(NVMs). In addition, a variety of materials can be deposited using ALD, oxides, nitrides, sulfides, metals, and so on. In conventional ALD, the source and reactant are pulsed into the reaction chamber alternately, one at a time, separated by purging or evacuation periods. Thermal ALD and metal organic ALD are also used, but these have their own advantages and disadvantages. Furthermore, plasma-enhanced ALD has come into the spotlight because it has more freedom in processing conditions; it uses highly reactive radicals and ions and for a wider range of material properties than the conventional thermal ALD, which uses $H_2O$ and $O_3$ as an oxygen reactant. However, the throughput is still a challenge for a current time divided ALD system. Therefore, a new concept of ALD, fast ALD or spatial ALD, which separate half-reactions spatially, has been extensively under development. In this paper, we reviewed these various kinds of ALD equipment, possible materials using ALD, and recent ALD research applications mainly focused on materials required in microelectronics.

A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate (Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구)

  • Kim, In-Ho;Lee, Gil-Young;Ju, Jeong-Min;Park, Kyoung-Tae;Chun, Byong-Sun
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

An efficient method for fluid/structure interaction analysis considering nonlinear structural behavior (비선형 구조 해석과 공력 해석의 효율적인 연계 알고리즘에 대한 연구)

  • Kim, Euiyoung;Chang, Seongmin;Lee, Dongho;Cho, Maenghyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.957-962
    • /
    • 2012
  • Fluid/structure interaction (FSI) analysis is necessary to predict the response of a system in which aerodynamic pressure causes deformation of the structure, and vice versa. In dealing with a nonlinear behavior of the structure, however, a simple iterative algorithm of aerodynamic analysis with structural analysis yields no accurate results since aerodynamic pressure need to be changed in accordance with the deformation of structures. In this study, we explore an efficient and accurate method for integrating FSI analysis into structural nonlinear systems. During the course of nonlinear structural analysis, loading conditions are periodically updated by aerodynamic analysis. The accuracy and efficiency of the method is demonstrated with a high-aspect-ratio flexible wing of Global Hawk.

Engineered Clay Minerals for Future Industries: Food Packaging and Environmental Remediation (미래산업에 적용가능한 점토 화합물: 식품포장 및 환경개선)

  • Kim, Hyoung-Jun;Oh, Jae-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.35-45
    • /
    • 2016
  • Clays, which are abundant in nature and eco-friendly, have been utilized throughout human history due to their characteristic physicochemical properties. Recently, a variety of clays such as montmorillonite, kaolinite, sepiolite and layered double hydroxide with or without chemical modification have been extensively studied for potential application in industries. Clays that possess a large specific surface area, high aspect ratio, nanometer sized layer thickness and controllable surface charge could be utilized as polymer fillers after appropriate chemical modifications. These modified clays can improve mechanical and gas barrier properties of polymer materials but also provide sustained antibacterial activity to polymer films. Furthermore, engineered clays can be utilized as scavengers for chemical or biological pollutants in water or soil, because they have desirable adsorption properties and chemical specificity. In this review, we are going to introduce recent researches on engineered clays for potential applications in future industries such as food packaging and environmental remediation.

Pressure Sore and Necrosis over the lateral malleolus of the Ankle (족근 관절 외과 부위의 압박궤양과 괴사)

  • Park, In-Heon;Song, Gyung-Won;Shin, Sung-Il;Lee, Jin-Young;Suh, Dong-Hyun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Pressure sores are an ulceration and necrosis of the skin and underlying tissue usually occur after prolonged or repeated pressure by interruption of blood flow from the small. vessels to the skin and deep tissue. The management of pressure sores is mostly difficult and requires prolonged hospitalization or repeated surgical interventions with a high recurrence rate. In this article we reviewed 14 cases of National Pressure Ulcer Advisory Pannel staging III, IV over the lateral malleolar area of the ankle in 2 years period from January 1999 to October 2001. The pressure over lateral malleolar area was mainly due to unique Korean sitting position with cross legs at flexed hips and knees or supine position of patient with external rotation of low extremity. Male to female ratio was 11: 3 and ages were between 36 and 83 (mean age: 67.1 years). Associated diseases were DM(7 cases), Hemiparesis caused by CVA(2 cases), Liver cirrhosis(2 cases), disarticulation of opposite hip due to squamous cell ca.(1 case), Intertrochanteric Fx.(1 case). Wound cultures reported Staphylococus, Pseudomonas and others. Abnormally elevated ESR and CRP were seen in 6 cases. Operative treatments were irrigation and debridement, direct closure with gravity drainage and skin grafting. The most important aspect of pressure sore treatment is pressure relief of the lateral malleolar area. Pressure-relieving Cast or Brace was helpful for local management and preventing recurrence.

  • PDF

Influence of Ultrasonic Treatment and Nano-Clay content on the Properties of Nano-Clay/Polyurethane Foam (초음파 처리와 나노클레이 농도가 나노클레이/폴리우레탄 폼의 물성에 미치는 영향)

  • Her, Kiyoung;Lim, Soonho;Kim, Daeheum
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.208-212
    • /
    • 2009
  • The nano-clay is widely used in polymer-nanocomposites due to the high aspect ratio, heat resistance and nano-scale dimension. In recent researches, the thermal and mechanical properties of polyurethane foam were improved with introducing the nano-clay. In this study, we describe the influence of ultrasonic treatment and content of nano-clay on properties of polyurethane foam. The nano-clay/polyurethane foam were characterized using their recovery time, compressive deflection, cell morphology and tensile test. The ultrasonic treatment was very effective for dispersion of nano-clay. Moreover, we found that introducing over 3 wt% of nano-clay bring the decrease of properties due to the poor dispersion. Expecially, ultrasonically treated 20A/polyurethane foam(1 wt%) showed greatly improved properties, such as homogeneous cell size and good dimension stability. We expect that our results could be applied to insulating materials for construction.

An Equation for the Prediction of Material Function of Super Soft Clay (초연약 점토의 구성관계 산정식)

  • Kang, Myoung-Chan;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.221-228
    • /
    • 2003
  • In land reclamation construction using marine clay, a measure of material function, that is, the relation between void ratio-effective stress and permeability, is very important aspect for the prediction of self-weight consolidation behavior. But reclaimed ground has very high water content, so there are many difficulties in the laboratory test for measuring material function. For this reason, some researches are carried out using slurry cconsolidometr to measure material function. In this study, material function was measured using slurry consolidometer, and to overcome the shortcoming of researches using slurry cosolidometer, an equation for the prediction of material function was proposed on the basis of column test's parameter. Material function was determined through low stress consolidation test and permeability test, and it also was calculated with the equation using column test parameter. The continuity of material function could be confirmed through these tests. Material function is easily determined with the equation proposed in this study, and can be used for the prediction of self-weight consolidation behavior.

Manufacturing of Eco-Friend Concrete Block using Recycled Materials (순환자원을 활용한 환경친화형 콘크리트 블록 제조)

  • Lee, Jae-Jin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.389-394
    • /
    • 2017
  • The aim of the research is providing the application method of recycled materials to manufacture the low costed eco-friend block at currently operated concrete block plant. In this research, based on the previous research results on three types of slag cement with illite, desulfurized gypsum, and wasted refractory products, the actual block product was manufactured by the currently operated plant facility and evaluated their properties to suggest the optimal proportions. As an experimental results, in aspect of compressive strength, absorption ratio, freezing resistance, and pH, type III slag incorporating 5% desulfurized gypsum with 1% replaced illite as an aggregate could be suggested as am optimal proportion. In additionally, considering the high cost of the illite, it can be considered as an optimal proportion that type III slag incorporating 5% desulfurized gypsum for binder.