• Title/Summary/Keyword: High Aspect Ratio

Search Result 957, Processing Time 0.027 seconds

Durability and Fracture Toughness of Noncircular Type-Carbon Fiber Reinforced Cement Composites (비원형 단-탄소섬유 보강 시멘트 복합재의 내구성 및 파괴인성)

  • Lee, Young-Seak;Kim, Tae-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.789-795
    • /
    • 1999
  • In this study, carbon fiber reinforced cement composites(CFRCs) reinforced with short noncircular type carbon fibers were fabricated and properties(drying shrinkage, resistance to freezing and thawing, and fracture toughness) were compared with those of the CFRCs reinforced with circular type carbon fibers. It was found that these properties greatly depended on the shape and length of carbon fibers. The drying shrinkage of CFRCs reinforced with C-type carbon fiber was superior to other CFRCs. This effect was increased with a high aspect ratio of fiber. The resistance to freezing and thawing was increased with the fiber length and fiber volume percent, but there was on remarkable effect to fiber shape. Fracture toughness and resistance to crack propagation of CFRCs reinforced with C-CFs were improved compared with other CFRCs. It was believed that the more absorption of fracture energy into the larger interface caused an increase in fracture toughness and resistance to crack propagation.

  • PDF

LABORATORY EXPERIMENTS OF OFF-AXIS MIRROR OPTICS OF ALUMINUM FOR SPACE INFRARED MISSIONS

  • Oseki, Shinji;Oyabu, Shinki;Ishihara, Daisuke;Enya, Keigo;Haze, Kanae;Kotani, Takayuki;Kaneda, Hidehiro;Nishiyama, Miho;Abe, Lyu;Yamamuro, Tomoyasu
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.359-361
    • /
    • 2017
  • We report our research on aluminum mirror optics for future infrared astronomical satellites. For space infrared missions, cooling the whole instrument is crucial to suppress the infrared background and detector noise. In this aspect, aluminum is appropriate for cryogenic optics, because the same material can be used for the whole structure of the instrument including optical components thanks to its excellent machinability, which helps to mitigate optical misalignment at low temperatures. We have fabricated aluminum mirrors with ultra-precision machining and measured the wave front errors (WFEs) of the mirrors with a Fizeau interferometer. Based on the power spectral densities of the WFEs, we confirmed that the surface accuracy of all the mirrors satisfied the requirements for the SPICA Coronagraph Instrument. We then integrated the mirrors into an optical system, and examined the image quality of the system with an optical laser. As a result, the total WFE is estimated to be 33 nm (rms) from the Strehl ratio. This is consistent with the WFEs estimated from the measurement of the individual mirrors.

Improvement of Bonding Strength Uniformity in Silicon-on-glass Process by Anchor Design (Silicon-on-glass 공정에서 접합력 균일도 향상을 위한 고정단 설계)

  • Park, Usung;An, Jun Eon;Yoon, Sungjin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.423-427
    • /
    • 2017
  • In this paper, an anchor design that improves bonding strength uniformity in the silicon-on-glass (SOG) process is presented. The SOG process is widely used in conjunction with electrode-patterned glass substrates as a standard fabrication process for forming high-aspect-ratio movable silicon microstructures in various types of sensors, including inertial and resonant sensors. In the proposed anchor design, a trench separates the silicon-bonded area and the electrode contact area to prevent irregular bonding caused by the protrusion of the electrode layer beyond the glass surface. This technique can be conveniently adopted to almost all devices fabricated by the SOG process without the necessity of additional processes.

An Analytical Study on the Shape Development of U-shaped Steel Damper for Seismic Isolation System (면진시스템용 U형 강재댐퍼의 형상 개발에 대한 해석적 연구)

  • Quan, Chun-Ri;Oh, Sang-Hoon;Lee, Sang-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2010
  • Seismic isolation is one of the most widely implemented and accepted seismic protection systems to limit or avoid damages from unforeseeable earthquakes. As an energy absorption device, however, the supplemental lead itself tends to pollute the environment. Consequently, it is predicted that the use of lead would be controlled. Considering the pollution caused by lead, several researchers are interested in the viability of using steel in place of lead. In this study, first, based on the results of a non-linear finite element analysis, the excellent deformation capacity of a very tough steel damper was demonstrated by comparing it with that of the SS400 damper and determining the effects of main parameters (the aspect ratio, thickness, and width) on the deformation capacity. Second, an optimum shape and design equation for a U-shaped damper with an opening based on stress distribution was suggested.

Efficiency of Chemical Amendments for Reducing Ecotoxicity in Heavy Metal Polluted Agricultural Fields

  • Choi, Won-Suk;Kim, Dae-Bok;Hong, Young-Kyu;Kim, Soon-Oh;Lee, Sang-Woo;Lee, Byung-Tae;Lee, Sang-Hwan;Park, Mi-Jung;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.75-80
    • /
    • 2016
  • This study was conducted to evaluate effect of chemical amendments on reducing bioavailable fraction of heavy metals in soil along with ecotoxicological effect on earthworms, Eisenia fetida. Three different chemical amendments, lime (L), steel slag (SS), and acid mine drainage sludge (AMDS), were applied with varied application ratio (1, 3, 5%). Heavy metal contaminated soil was mixed with chemical amedments and earthworms, Eisenia fetida, were cultivated for 28 days. Bioavailable fraction of heavy metals (Cd, Cu, Pb, and Zn) extracted with 0.1N HCl was monitored and also, mortality, growth, and metal concentration in earthworm were assessed. Result showed that all three amendments had high efficiency to reduce bioavailable fraction of heavy metals in soil. In particular, lime showed the highest reduction rate of Cu (63.9-87.7%), Pb (7.90-24.65%), and Zn (40.83-77.60%) among three amendments. No mortality of earthworm was observed during experimental period except 3% and 5% AMDS treatment indicating that application of chemical amendments is safe in terms of ecotoxicological aspect. However, no positive correlation was observed between reduction of bioavaialble fraction of heavy metals in soil and earthworms. Overall, application of chemical amendments in agricultural field can be adapted for reducing bioavailable fraction of heavy metals and detoxification in soil.

The Figures for the Alstom Power Pressurized Fluidized Bed Combustion Combined Cycle System (Alstom Power의 가압유동층 복합발전 시스템 특성)

  • 이윤경;주용진;김종진
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • Pressurized fluidized bed combustion unit is operated at pressures of 1~1.5 MPa with combustion temperatures of 850~87$0^{\circ}C$. The pressurized coal combustion system heats steam, in conventional heat transfer tubing, and produces a hot gas supplied to a gas turbine. Gas cleaning is a vital aspect of the system, as is the ability of the turbine to cope with some residual solids. The need to pressurize the feed coal, limestone and combustion air, and to depressurize the flue gases and the ash removal system introduces some significant operating complications. The proportion of power coming from the steam : gas turbines is approximately 80:20%. Pressurized fluidized bed combustion and generation by the combined cycle route involves unique control considerations, as the combustor and gas turbine have to be properly matched through the whole operating range. The gas turbines are rather special, in that the maximum gas temperature available from the FBC is limited by ash fusion characteristics. As no ash softening should take place, the maximum gas temperature is around 90$0^{\circ}C$. As a result a high pressure ratio gas turbine with compression intercooling is used. This is to offset the effects of the relatively low temperature at the turbine inlet.

Geometry Effect of Multi-Walled Carbon Nanotube on Elastic Modulus of Polymer Composites (다중벽 탄소나노튜브의 형상인자에 따른 고분자 복합재료의 탄성계수에 관한 연구)

  • Suhr, Jonghwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.89-94
    • /
    • 2014
  • The high Young's modulus and tensile strength of carbon nanotubes has attracted great attention from the research community given the potential for developing super-strong, super-stiff composites with carbon nanotube reinforcements. Over the decades, the strength and stiffness of carbon nanotube-reinforced polymer nanocomposites have been researched extensively. However, unfortunately, such strong composite materials have not been developed yet. It has been reported that the efficiency of load transfer in such systems is critically dependent on the quality of adhesion between the nanotubes and the polymer chains. In addition, the waviness and orientation of the nanotubes embedded in a matrix reduce the reinforcement effectiveness. In this study, we carried out performed micromechanics-based numerical modeling and analysis by varying the geometry of carbon nanotubes including their aspect ratio, orientation, and waviness. The results of this analysis allow for a better understanding of the load transfer capabilities of carbon nanotube-reinforced polymer composites.

The Development of Partial Model for Thermo-Mechanical Stress Analyses of Part with Coated Layer under Contact Load (접촉하중을 받는 코팅층이 있는 부재의 응력해석을 위한 부분 모델 방법의 개발)

  • Kwon, Young-Doo;Kim, Seock-Sam;Goo, Nam-Seo;Park, Jung-Gyu
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.194-203
    • /
    • 2002
  • This paper is the first step fur thermo-mechanical stress analyses of part with coated layer under contact load. A lot of coated material is applied in many structures to endure severe situation, like thermal stresses, high temperature gradients, irradiation, impacts by microscopic meteorites, and so on. In this part we are going to apply the FEM to analyze space parts with a coated layer subjected to a contact load thermo-mechanically. Coating layer is very thin in comparision with the structure, therefore it should take more times and behaviors to analyze whole model. In these reason we develop the FEM method of analyzing part with coated layer under contact load using partial model. Steady state temperature distribution of the part is obtained first, and then we apply quasi-static external load on the part. To obtain the final stage of solution, we compute the total solution, and by subtracting the thermal strain from the total ones we get the mechanical strains to compute stresses of the parts. In using the FEM, one has to discretize the model into many sub-domain, finite elements. The method is consisited of two steps. First step is to analyze the whole model with rather coarse meshes. Second step we cut a small region near the loading point, and analyze with very fine meshes. This method is allowable by the Saint-Venant's principle. And then, we finally shall check the therma1 load on the stresses of the space part with coating layer with or without substrate cracks. Then, we predict the actual behaviors of the part used in space.

Swimming Motion of Flagellated Bacteria Under Low Shear Flow Conditions (느린 전단흐름에서 편모운동에 의한 대장균의 거동 특성)

  • Ahn, Yong-Tae;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.191-195
    • /
    • 2011
  • The measurement and prediction of bacterial transport of bacteria in aquatic systems is of fundamental importance to a variety of fields such as groundwater bioremediation ascending urinary tract infection. The motility of pathogenic bacteria is, however, often missing when considering pathogen translocation prediction. Previously, it was reported that flagellated E. coli can translate upstream under low shear flow conditions. The upstream swimming of flagellated microorganisms depends on hydrodynamic interaction between cell body and surrounding fluid flow. In this study, we used a breathable microfluidic device to image swimming E. coli at a glass surface under low shear flow condition. The tendency of upstream swimming motion was expressed in terms of 'A' value in parabolic equation ($y=Ax^2+Bx+C$). It was observed that high shear flow rate increased the 'A' value as the shear force acting on bacterium increased. Shorter bacterium turned more tightly into the flow as they swim faster and experience less drag force. The result obtained in this study might be relevant in studying the fate and transport of bacterium under low shear flow environment such as irrigation pipe, water distribution system, and urethral catheter.

Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation

  • Bendenia, Noureddine;Zidour, Mohamed;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Bedia, E.A. Adda;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.213-226
    • /
    • 2020
  • The present study covenants with the static and free vibration behavior of nanocomposite sandwich plates reinforced by carbon nanotubes resting on Pasternak elastic foundation. Uniformly distributed (UD-CNT) and functionally graded (FG-CNT) distributions of aligned carbon nanotube are considered for two types of sandwich plates such as, the face sheet reinforced and homogeneous core and the homogeneous face sheet and reinforced core. Based on the first shear deformation theory (FSDT), the Hamilton's principle is employed to derive the mathematical models. The obtained solutions are numerically validated by comparison with some available cases in the literature. The elastic foundation model is assumed as one parameter Winkler - Pasternak foundation. A parametric study is conducted to study the effects of aspect ratios, foundation parameters, carbon nanotube volume fraction, types of reinforcement, core-to-face sheet thickness ratio and types of loads acting on the bending and free vibration analyses. It is explicitly shown that the (FG-CNT) face sheet reinforced sandwich plate has a high resistance against deflections compared to other types of reinforcement. It is also revealed that the reduction in the dimensionless natural frequency is most pronounced in core reinforced sandwich plate.